IDEAS home Printed from https://ideas.repec.org/a/hin/complx/3286070.html
   My bibliography  Save this article

Multistability Analysis and Function Projective Synchronization in Relay Coupled Oscillators

Author

Listed:
  • Ahmad Taher Azar
  • Ngo Mouelas Adele
  • Kammogne Soup Tewa Alain
  • Romanic Kengne
  • Fotsin Hilaire Bertrand

Abstract

Regions of stability phases discovered in a general class of Genesio−Tesi chaotic oscillators are proposed. In a relatively large region of two-parameter space, the system has coexisting point attractors and limit cycles. The variation of two parameters is used to characterize the multistability by plotting the isospike diagrams for two nonsymmetric initial conditions. The parameters window in which the jerk system exhibits the unusual and striking feature of multiple attractors (e.g., coexistence of six disconnected periodic chaotic attractors and three-point attraction) is investigated. The second aspect of this study presents the synchronization of systems that act as mediators between two dynamical units that, in turn, show function projective synchronization (FPS) with each other. These are the so-called relay systems. In a wide range of operating parameters; this setup leads to synchronization between the outer circuits, while the relaying element remains unsynchronized. The results show that the coupled systems can achieve function projective synchronization in a determined time despite the unpredictability of the scaling function. In the coupling path, the outer dynamical systems show finite-time synchronization of their outputs, that is, displaying the same dynamics at exactly the same moment. Further, this effect is rather general and it has a wide range of applications where sustained oscillations should be retained for proper functioning of the systems.

Suggested Citation

  • Ahmad Taher Azar & Ngo Mouelas Adele & Kammogne Soup Tewa Alain & Romanic Kengne & Fotsin Hilaire Bertrand, 2018. "Multistability Analysis and Function Projective Synchronization in Relay Coupled Oscillators," Complexity, Hindawi, vol. 2018, pages 1-12, January.
  • Handle: RePEc:hin:complx:3286070
    DOI: 10.1155/2018/3286070
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/8503/2018/3286070.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/8503/2018/3286070.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/2018/3286070?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Bao, B.C. & Bao, H. & Wang, N. & Chen, M. & Xu, Q., 2017. "Hidden extreme multistability in memristive hyperchaotic system," Chaos, Solitons & Fractals, Elsevier, vol. 94(C), pages 102-111.
    2. Freire, Joana G. & Gallas, Jason A.C., 2014. "Cyclic organization of stable periodic and chaotic pulsations in Hartley’s oscillator," Chaos, Solitons & Fractals, Elsevier, vol. 59(C), pages 129-134.
    3. Oliveira, Diego F.M. & Leonel, Edson D., 2013. "Some dynamical properties of a classical dissipative bouncing ball model with two nonlinearities," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(8), pages 1762-1769.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wu, H.G. & Ye, Y. & Bao, B.C. & Chen, M. & Xu, Q., 2019. "Memristor initial boosting behaviors in a two-memristor-based hyperchaotic system," Chaos, Solitons & Fractals, Elsevier, vol. 121(C), pages 178-185.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tchitnga, R. & Mezatio, B.A. & Fozin, T. Fonzin & Kengne, R. & Louodop Fotso, P.H. & Fomethe, A., 2019. "A novel hyperchaotic three-component oscillator operating at high frequency," Chaos, Solitons & Fractals, Elsevier, vol. 118(C), pages 166-180.
    2. Zhang, Yunzhen & Liu, Zhong & Wu, Huagan & Chen, Shengyao & Bao, Bocheng, 2019. "Two-memristor-based chaotic system and its extreme multistability reconstitution via dimensionality reduction analysis," Chaos, Solitons & Fractals, Elsevier, vol. 127(C), pages 354-363.
    3. Hu, Yongbing & Li, Qian & Ding, Dawei & Jiang, Li & Yang, Zongli & Zhang, Hongwei & Zhang, Zhixin, 2021. "Multiple coexisting analysis of a fractional-order coupled memristive system and its application in image encryption," Chaos, Solitons & Fractals, Elsevier, vol. 152(C).
    4. Yan, Dengwei & Wang, Lidan & Duan, Shukai & Chen, Jiaojiao & Chen, Jiahao, 2021. "Chaotic Attractors Generated by a Memristor-Based Chaotic System and Julia Fractal," Chaos, Solitons & Fractals, Elsevier, vol. 146(C).
    5. Wu, H.G. & Ye, Y. & Bao, B.C. & Chen, M. & Xu, Q., 2019. "Memristor initial boosting behaviors in a two-memristor-based hyperchaotic system," Chaos, Solitons & Fractals, Elsevier, vol. 121(C), pages 178-185.
    6. Jafari, Sajad & Dehghan, Soroush & Chen, Guanrong & Kingni, Sifeu Takougang & Rajagopal, Karthikeyan, 2018. "Twin birds inside and outside the cage," Chaos, Solitons & Fractals, Elsevier, vol. 112(C), pages 135-140.
    7. Lai, Qiang & Xu, Guanghui & Pei, Huiqin, 2019. "Analysis and control of multiple attractors in Sprott B system," Chaos, Solitons & Fractals, Elsevier, vol. 123(C), pages 192-200.
    8. G. H. Kom & J. Kengne & J. R. Mboupda Pone & G. Kenne & A. B. Tiedeu, 2018. "Asymmetric Double Strange Attractors in a Simple Autonomous Jerk Circuit," Complexity, Hindawi, vol. 2018, pages 1-16, February.
    9. Deng, Yue & Li, Yuxia, 2021. "Bifurcation and bursting oscillations in 2D non-autonomous discrete memristor-based hyperchaotic map," Chaos, Solitons & Fractals, Elsevier, vol. 150(C).
    10. Leng, Xiangxin & Gu, Shuangquan & Peng, Qiqi & Du, Baoxiang, 2021. "Study on a four-dimensional fractional-order system with dissipative and conservative properties," Chaos, Solitons & Fractals, Elsevier, vol. 150(C).
    11. N. C. Pati, 2023. "Bifurcations and multistability in a physically extended Lorenz system for rotating convection," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 96(8), pages 1-15, August.
    12. Mezatio, Brice Anicet & Motchongom, Marceline Tingue & Wafo Tekam, Blaise Raoul & Kengne, Romanic & Tchitnga, Robert & Fomethe, Anaclet, 2019. "A novel memristive 6D hyperchaotic autonomous system with hidden extreme multistability," Chaos, Solitons & Fractals, Elsevier, vol. 120(C), pages 100-115.
    13. Xu, Lu & Chu, Yan-Dong & Yang, Qiong, 2020. "Novel dynamical Scenario of the two-stage Colpitts oscillator," Chaos, Solitons & Fractals, Elsevier, vol. 138(C).
    14. Borah, Manashita & Roy, Binoy Krishna, 2020. "Systematic construction of high dimensional fractional-order hyperchaotic systems," Chaos, Solitons & Fractals, Elsevier, vol. 131(C).
    15. Jiri Petrzela, 2022. "Chaos in Analog Electronic Circuits: Comprehensive Review, Solved Problems, Open Topics and Small Example," Mathematics, MDPI, vol. 10(21), pages 1-28, November.
    16. Jia, Hongyan & Shi, Wenxin & Wang, Lei & Qi, Guoyuan, 2020. "Energy analysis of Sprott-A system and generation of a new Hamiltonian conservative chaotic system with coexisting hidden attractors," Chaos, Solitons & Fractals, Elsevier, vol. 133(C).
    17. Li, Chunbiao & Sprott, Julien Clinton & Zhang, Xin & Chai, Lin & Liu, Zuohua, 2022. "Constructing conditional symmetry in symmetric chaotic systems," Chaos, Solitons & Fractals, Elsevier, vol. 155(C).
    18. Du, Chuanhong & Liu, Licai & Zhang, Zhengping & Yu, Shixing, 2021. "Double memristors oscillator with hidden stacked attractors and its multi-transient and multistability analysis," Chaos, Solitons & Fractals, Elsevier, vol. 148(C).
    19. Xianyang Xie & Shiping Wen & Yuming Feng & Babatunde Oluwaseun Onasanya, 2022. "Three-Stage-Impulse Control of Memristor-Based Chen Hyper-Chaotic System," Mathematics, MDPI, vol. 10(23), pages 1-16, December.
    20. Zhang, Sen & Zeng, Yicheng, 2019. "A simple Jerk-like system without equilibrium: Asymmetric coexisting hidden attractors, bursting oscillation and double full Feigenbaum remerging trees," Chaos, Solitons & Fractals, Elsevier, vol. 120(C), pages 25-40.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:complx:3286070. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.