IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v174y2023ics0960077923007452.html
   My bibliography  Save this article

Multistability and synchronization of discrete maps via memristive coupling

Author

Listed:
  • Bao, Han
  • Rong, Kang
  • Chen, Mo
  • Zhang, Xi
  • Bao, Bocheng

Abstract

Due to its internal state, the memristive nonlinearity has different dynamic characteristics from the traditional resistive nonlinearity. It has been proved that the memristive nonlinearity used as a nonlinear coupler to connect two dynamical systems has rich multi-stability phenomena and complex synchronous behaviors. However, few reports have extended memristive couplers and dynamical systems from continuous-time domain to discrete-time domain. To this end, this article proposes a simple memristor-coupled Logistic map (MCLM) model by coupling two identical Logistic maps through a memristive coupler. The MCLM model owns two line fixed point sets related to memristor initial condition and their stability distributions are discussed based on three eigenvalues. The chaotic/hyperchaotic attractors with outstanding performance indicators are revealed using numerical methods, and the initial-related heterogeneous multistability and memristor initial-boosting homogeneous multistability are demonstrated by basins of attraction that have complex and fractal evolutions. Afterwards, by inspecting the synchronous behaviors of the two Logistic maps in the MCLM model, the lag and complete synchronization behaviors dependent on the coupling strength and memristor initial condition, especially the homogeneous synchronization behavior boosted by the memristor initial condition, are disclosed in succession. In addition, an MCU-based hardware platform is fabricated to experimentally validate the numerical results. Of particular interest, to the best knowledge of the authors, the initial-boosting synchronization has not been reported in the literature.

Suggested Citation

  • Bao, Han & Rong, Kang & Chen, Mo & Zhang, Xi & Bao, Bocheng, 2023. "Multistability and synchronization of discrete maps via memristive coupling," Chaos, Solitons & Fractals, Elsevier, vol. 174(C).
  • Handle: RePEc:eee:chsofr:v:174:y:2023:i:c:s0960077923007452
    DOI: 10.1016/j.chaos.2023.113844
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077923007452
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2023.113844?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Njitacke, Z.T. & Kengne, J. & Tapche, R. Wafo & Pelap, F.B., 2018. "Uncertain destination dynamics of a novel memristive 4D autonomous system," Chaos, Solitons & Fractals, Elsevier, vol. 107(C), pages 177-185.
    2. Parastesh, Fatemeh & Azarnoush, Hamed & Jafari, Sajad & Hatef, Boshra & Perc, Matjaž & Repnik, Robert, 2019. "Synchronizability of two neurons with switching in the coupling," Applied Mathematics and Computation, Elsevier, vol. 350(C), pages 217-223.
    3. Semenov, Danila M. & Fradkov, Alexander L., 2021. "Adaptive synchronization in the complex heterogeneous networks of Hindmarsh–Rose neurons," Chaos, Solitons & Fractals, Elsevier, vol. 150(C).
    4. Mezatio, Brice Anicet & Motchongom, Marceline Tingue & Wafo Tekam, Blaise Raoul & Kengne, Romanic & Tchitnga, Robert & Fomethe, Anaclet, 2019. "A novel memristive 6D hyperchaotic autonomous system with hidden extreme multistability," Chaos, Solitons & Fractals, Elsevier, vol. 120(C), pages 100-115.
    5. Wu, H.G. & Ye, Y. & Bao, B.C. & Chen, M. & Xu, Q., 2019. "Memristor initial boosting behaviors in a two-memristor-based hyperchaotic system," Chaos, Solitons & Fractals, Elsevier, vol. 121(C), pages 178-185.
    6. Li, Kexin & Bao, Bocheng & Ma, Jun & Chen, Mo & Bao, Han, 2022. "Synchronization transitions in a discrete memristor-coupled bi-neuron model," Chaos, Solitons & Fractals, Elsevier, vol. 165(P2).
    7. Wu, Hongjuan & Li, Chuandong & He, Zhilong & Wang, Yinuo & He, Yingying, 2021. "Lag synchronization of nonlinear dynamical systems via asymmetric saturated impulsive control," Chaos, Solitons & Fractals, Elsevier, vol. 152(C).
    8. Wu, H. & Zhou, J. & Chen, M. & Xu, Q. & Bao, B., 2022. "DC-offset induced asymmetry in memristive diode-bridge-based Shinriki oscillator," Chaos, Solitons & Fractals, Elsevier, vol. 154(C).
    9. Jafari, Sajad & Ahmadi, Atefeh & Panahi, Shirin & Rajagopal, Karthikeyan, 2018. "Extreme multi-stability: When imperfection changes quality," Chaos, Solitons & Fractals, Elsevier, vol. 108(C), pages 182-186.
    10. Bao, H. & Gu, Y. & Xu, Q. & Zhang, X. & Bao, B., 2022. "Parallel bi-memristor hyperchaotic map with extreme multistability," Chaos, Solitons & Fractals, Elsevier, vol. 160(C).
    11. Zhong, Huiyan & Li, Guodong & Xu, Xiangliang, 2022. "A generic voltage-controlled discrete memristor model and its application in chaotic map," Chaos, Solitons & Fractals, Elsevier, vol. 161(C).
    12. Korneev, I.A. & Semenov, V.V. & Slepnev, A.V. & Vadivasova, T.E., 2021. "The impact of memristive coupling initial states on travelling waves in an ensemble of the FitzHugh–Nagumo oscillators," Chaos, Solitons & Fractals, Elsevier, vol. 147(C).
    13. Bao, B. & Peol, M.A. & Bao, H. & Chen, M. & Li, H. & Chen, B., 2021. "No-argument memristive hyper-jerk system and its coexisting chaotic bubbles boosted by initial conditions," Chaos, Solitons & Fractals, Elsevier, vol. 144(C).
    14. Ma, Jun & Mi, Lv & Zhou, Ping & Xu, Ying & Hayat, Tasawar, 2017. "Phase synchronization between two neurons induced by coupling of electromagnetic field," Applied Mathematics and Computation, Elsevier, vol. 307(C), pages 321-328.
    15. Peng, Yuexi & Sun, Kehui & He, Shaobo, 2020. "A discrete memristor model and its application in Hénon map," Chaos, Solitons & Fractals, Elsevier, vol. 137(C).
    16. Minati, L. & Gambuzza, L.V. & Thio, W.J. & Sprott, J.C. & Frasca, M., 2020. "A chaotic circuit based on a physical memristor," Chaos, Solitons & Fractals, Elsevier, vol. 138(C).
    17. Wang, Leimin & Dong, Tiandu & Ge, Ming-Feng, 2019. "Finite-time synchronization of memristor chaotic systems and its application in image encryption," Applied Mathematics and Computation, Elsevier, vol. 347(C), pages 293-305.
    18. Deng, Yue & Li, Yuxia, 2021. "Bifurcation and bursting oscillations in 2D non-autonomous discrete memristor-based hyperchaotic map," Chaos, Solitons & Fractals, Elsevier, vol. 150(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. N. C. Pati, 2023. "Bifurcations and multistability in a physically extended Lorenz system for rotating convection," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 96(8), pages 1-15, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bao, H. & Gu, Y. & Xu, Q. & Zhang, X. & Bao, B., 2022. "Parallel bi-memristor hyperchaotic map with extreme multistability," Chaos, Solitons & Fractals, Elsevier, vol. 160(C).
    2. Li, Kexin & Bao, Bocheng & Ma, Jun & Chen, Mo & Bao, Han, 2022. "Synchronization transitions in a discrete memristor-coupled bi-neuron model," Chaos, Solitons & Fractals, Elsevier, vol. 165(P2).
    3. Zhang, Shaohua & Zhang, Hongli & Wang, Cong, 2023. "Memristor initial-boosted extreme multistability in the novel dual-memristor hyperchaotic maps," Chaos, Solitons & Fractals, Elsevier, vol. 174(C).
    4. Fan, Zhenyi & Zhang, Chenkai & Wang, Yiming & Du, Baoxiang, 2023. "Construction, dynamic analysis and DSP implementation of a novel 3D discrete memristive hyperchaotic map," Chaos, Solitons & Fractals, Elsevier, vol. 177(C).
    5. Bao, B. & Peol, M.A. & Bao, H. & Chen, M. & Li, H. & Chen, B., 2021. "No-argument memristive hyper-jerk system and its coexisting chaotic bubbles boosted by initial conditions," Chaos, Solitons & Fractals, Elsevier, vol. 144(C).
    6. Yuan, Fang & Xing, Guibin & Deng, Yue, 2023. "Flexible cascade and parallel operations of discrete memristor," Chaos, Solitons & Fractals, Elsevier, vol. 166(C).
    7. Yunzhen Zhang & Zhong Liu & Mo Chen & Huagan Wu & Shengyao Chen & Bocheng Bao, 2019. "Dimensionality Reduction Reconstitution for Extreme Multistability in Memristor-Based Colpitts System," Complexity, Hindawi, vol. 2019, pages 1-12, November.
    8. Bao, Han & Yu, Xihong & Zhang, Yunzhen & Liu, Xiaofeng & Chen, Mo, 2023. "Initial condition-offset regulating synchronous dynamics and energy diversity in a memristor-coupled network of memristive HR neurons," Chaos, Solitons & Fractals, Elsevier, vol. 177(C).
    9. Lai, Qiang & Yang, Liang & Liu, Yuan, 2022. "Design and realization of discrete memristive hyperchaotic map with application in image encryption," Chaos, Solitons & Fractals, Elsevier, vol. 165(P1).
    10. Deng, Yue & Li, Yuxia, 2021. "Bifurcation and bursting oscillations in 2D non-autonomous discrete memristor-based hyperchaotic map," Chaos, Solitons & Fractals, Elsevier, vol. 150(C).
    11. Leng, Xiangxin & Gu, Shuangquan & Peng, Qiqi & Du, Baoxiang, 2021. "Study on a four-dimensional fractional-order system with dissipative and conservative properties," Chaos, Solitons & Fractals, Elsevier, vol. 150(C).
    12. Branislav Rehák & Volodymyr Lynnyk, 2021. "Synchronization of a Network Composed of Stochastic Hindmarsh–Rose Neurons," Mathematics, MDPI, vol. 9(20), pages 1-16, October.
    13. Ren, Lujie & Mou, Jun & Banerjee, Santo & Zhang, Yushu, 2023. "A hyperchaotic map with a new discrete memristor model: Design, dynamical analysis, implementation and application," Chaos, Solitons & Fractals, Elsevier, vol. 167(C).
    14. Yan, Shaohui & Wang, Ertong & Gu, Binxian & Wang, Qiyu & Ren, Yu & Wang, Jianjian, 2022. "Analysis and finite-time synchronization of a novel double-wing chaotic system with transient chaos," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 602(C).
    15. Cheng, Guanghui & Gui, Rong, 2022. "Bistable chaotic family and its chaotic mechanism," Chaos, Solitons & Fractals, Elsevier, vol. 162(C).
    16. Wang, Zhen & Ahmadi, Atefeh & Tian, Huaigu & Jafari, Sajad & Chen, Guanrong, 2023. "Lower-dimensional simple chaotic systems with spectacular features," Chaos, Solitons & Fractals, Elsevier, vol. 169(C).
    17. Zhao, Qianhan & Bao, Han & Zhang, Xi & Wu, Huagan & Bao, Bocheng, 2024. "Complexity enhancement and grid basin of attraction in a locally active memristor-based multi-cavity map," Chaos, Solitons & Fractals, Elsevier, vol. 182(C).
    18. Zhao, Zhigao & Chen, Fei & He, Xianghui & Lan, Pengfei & Chen, Diyi & Yin, Xiuxing & Yang, Jiandong, 2024. "A universal hydraulic-mechanical diagnostic framework based on feature extraction of abnormal on-field measurements: Application in micro pumped storage system," Applied Energy, Elsevier, vol. 357(C).
    19. Liu, Tianming & Yan, Huizhen & Banerjee, Santo & Mou, Jun, 2021. "A fractional-order chaotic system with hidden attractor and self-excited attractor and its DSP implementation," Chaos, Solitons & Fractals, Elsevier, vol. 145(C).
    20. Shadizadeh, S. Mohadeseh & Nazarimehr, Fahimeh & Jafari, Sajad & Rajagopal, Karthikeyan, 2022. "Investigating different synaptic connections of the Chay neuron model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 607(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:174:y:2023:i:c:s0960077923007452. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.