IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v104y2017icp363-370.html
   My bibliography  Save this article

Threading a multifractal social psychology through within-organism coordination to within-group interactions: A tale of coordination in three acts

Author

Listed:
  • Kelty-Stephen, Damian G.

Abstract

This manuscript attempts an informal, relatively concept-heavy/mathematics-lean presentation to all experts on group processes about how many group processes might unfold upon a generic sort of scaffolding called “multifractal structure.” Explaining group processes poses complementary challenges of explaining similarity among agents belonging to a group and, also, explaining frustrating dissimilarities when agents pull apart and begin to wander from the fold, showing deep multi-scaled texture (e.g., groups containing subgroups, agents containing subagents). Whereas time-varying, multi-scaled texture hampers many linear models, multifractality does what so few other formalisms can: it allows predicting similarities and dissimilarities from nonlinear interactions across scale. Empirical estimates of the multifractal spectrum offer continuously-varying but compact logical support for portraying both the qualitative similarities and the more frustrating qualitative dissimilarities. This story begins at one level to meet the organism at an intuitively behavioral scale, zooms in to a within-organism view, and zooms out to an across-organism view. At each view, resonance of multifractal modeling with the multi-scale structure of group processes reveals new insights into how group behaviors support perception, action, and cognition. This tale of social coordination told in three separate acts has a moral: Multifractality may be a ready tool for wider social-psychological application.

Suggested Citation

  • Kelty-Stephen, Damian G., 2017. "Threading a multifractal social psychology through within-organism coordination to within-group interactions: A tale of coordination in three acts," Chaos, Solitons & Fractals, Elsevier, vol. 104(C), pages 363-370.
  • Handle: RePEc:eee:chsofr:v:104:y:2017:i:c:p:363-370
    DOI: 10.1016/j.chaos.2017.08.037
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077917303661
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2017.08.037?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jun Taek Lee & Damian G. Kelty-Stephen, 2017. "Cascade-Driven Series with Narrower Multifractal Spectra Than Their Surrogates: Standard Deviation of Multipliers Changes Interactions across Scales," Complexity, Hindawi, vol. 2017, pages 1-8, January.
    2. Stephen, Damian G. & Dixon, James A., 2011. "Strong anticipation: Multifractal cascade dynamics modulate scaling in synchronization behaviors," Chaos, Solitons & Fractals, Elsevier, vol. 44(1), pages 160-168.
    3. Kantelhardt, Jan W. & Zschiegner, Stephan A. & Koscielny-Bunde, Eva & Havlin, Shlomo & Bunde, Armin & Stanley, H.Eugene, 2002. "Multifractal detrended fluctuation analysis of nonstationary time series," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 316(1), pages 87-114.
    4. Stephen, Damian G. & Stepp, Nigel & Dixon, James A. & Turvey, M.T., 2008. "Strong anticipation: Sensitivity to long-range correlations in synchronization behavior," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(21), pages 5271-5278.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Stanis{l}aw Dro.zd.z & Rafa{l} Kowalski & Pawe{l} O'swic{e}cimka & Rafa{l} Rak & Robert Gc{e}barowski, 2018. "Dynamical variety of shapes in financial multifractality," Papers 1809.06728, arXiv.org.
    2. Delignières, Didier & Marmelat, Vivien, 2014. "Strong anticipation and long-range cross-correlation: Application of detrended cross-correlation analysis to human behavioral data," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 394(C), pages 47-60.
    3. Stephen, Damian G. & Hsu, Wen-Hao & Young, Diana & Saltzman, Elliot L. & Holt, Kenneth G. & Newman, Dava J. & Weinberg, Marc & Wood, Robert J. & Nagpal, Radhika & Goldfield, Eugene C., 2012. "Multifractal fluctuations in joint angles during infant spontaneous kicking reveal multiplicativity-driven coordination," Chaos, Solitons & Fractals, Elsevier, vol. 45(9), pages 1201-1219.
    4. Jun Taek Lee & Damian G. Kelty-Stephen, 2017. "Cascade-Driven Series with Narrower Multifractal Spectra Than Their Surrogates: Standard Deviation of Multipliers Changes Interactions across Scales," Complexity, Hindawi, vol. 2017, pages 1-8, January.
    5. Pawe{l} O'swik{e}cimka & Stanis{l}aw Dro.zd.z & Mattia Frasca & Robert Gk{e}barowski & Natsue Yoshimura & Luciano Zunino & Ludovico Minati, 2020. "Wavelet-based discrimination of isolated singularities masquerading as multifractals in detrended fluctuation analyses," Papers 2004.03319, arXiv.org.
    6. Wu, Liang & Chen, Lei & Ding, Yiming & Zhao, Tongzhou, 2018. "Testing for the source of multifractality in water level records," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 508(C), pages 824-839.
    7. Stephen, Damian G. & Dixon, James A., 2011. "Strong anticipation: Multifractal cascade dynamics modulate scaling in synchronization behaviors," Chaos, Solitons & Fractals, Elsevier, vol. 44(1), pages 160-168.
    8. Kelty-Stephen, Damian G. & Mangalam, Madhur, 2024. "Additivity suppresses multifractal nonlinearity due to multiplicative cascade dynamics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 637(C).
    9. Okano, Masahiro & Kurebayashi, Wataru & Shinya, Masahiro & Kudo, Kazutoshi, 2019. "Hybrid dynamics in a paired rhythmic synchronization–continuation task," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 524(C), pages 625-638.
    10. Mahmoodi, Korosh & West, Bruce J. & Grigolini, Paolo, 2020. "On the dynamical foundation of multifractality," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 551(C).
    11. Lavička, Hynek & Kracík, Jiří, 2020. "Fluctuation analysis of electric power loads in Europe: Correlation multifractality vs. Distribution function multifractality," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 545(C).
    12. Kakinaka, Shinji & Umeno, Ken, 2021. "Exploring asymmetric multifractal cross-correlations of price–volatility and asymmetric volatility dynamics in cryptocurrency markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 581(C).
    13. Longfeng Zhao & Wei Li & Andrea Fenu & Boris Podobnik & Yougui Wang & H. Eugene Stanley, 2017. "The q-dependent detrended cross-correlation analysis of stock market," Papers 1705.01406, arXiv.org, revised Jun 2017.
    14. Vitanov, Nikolay K. & Sakai, Kenshi & Dimitrova, Zlatinka I., 2008. "SSA, PCA, TDPSC, ACFA: Useful combination of methods for analysis of short and nonstationary time series," Chaos, Solitons & Fractals, Elsevier, vol. 37(1), pages 187-202.
    15. El Alaoui, Marwane & Benbachir, Saâd, 2013. "Multifractal detrended cross-correlation analysis in the MENA area," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(23), pages 5985-5993.
    16. Méndez-Gordillo, Alma Rosa & Cadenas, Erasmo, 2021. "Wind speed forecasting by the extraction of the multifractal patterns of time series through the multiplicative cascade technique," Chaos, Solitons & Fractals, Elsevier, vol. 143(C).
    17. Nagarajan, Radhakrishnan & Kavasseri, Rajesh G., 2005. "Minimizing the effect of periodic and quasi-periodic trends in detrended fluctuation analysis," Chaos, Solitons & Fractals, Elsevier, vol. 26(3), pages 777-784.
    18. Diniz-Maganini, Natalia & Diniz, Eduardo H. & Rasheed, Abdul A., 2021. "Bitcoin’s price efficiency and safe haven properties during the COVID-19 pandemic: A comparison," Research in International Business and Finance, Elsevier, vol. 58(C).
    19. Mei, Dexiang & Liu, Jing & Ma, Feng & Chen, Wang, 2017. "Forecasting stock market volatility: Do realized skewness and kurtosis help?," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 481(C), pages 153-159.
    20. Zhang, Jiao & Li, Youping & Liu, Chunqiong & Wu, Bo & Shi, Kai, 2022. "A study of cross-correlations between PM2.5 and O3 based on Copula and Multifractal methods," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 589(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:104:y:2017:i:c:p:363-370. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.