IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v9y2021i24p3219-d701213.html
   My bibliography  Save this article

Numerical Solution to Anomalous Diffusion Equations for Levy Walks

Author

Listed:
  • Viacheslav V. Saenko

    (Laboratory for Interdisciplinary Problems of Energy Reproduction, Ulyanovsk State Technical University, 32, Severny Venets St., 432027 Ulyanovsk, Russia
    S.P. Kapitsa Scientific Research Institute of Technology, Ulyanovsk State University, 42, L. Tolstoy St., 432017 Ulyanovsk, Russia)

  • Vladislav N. Kovalnogov

    (Laboratory for Interdisciplinary Problems of Energy Reproduction, Ulyanovsk State Technical University, 32, Severny Venets St., 432027 Ulyanovsk, Russia)

  • Ruslan V. Fedorov

    (Laboratory for Interdisciplinary Problems of Energy Reproduction, Ulyanovsk State Technical University, 32, Severny Venets St., 432027 Ulyanovsk, Russia)

  • Yuri E. Chamchiyan

    (Laboratory for Interdisciplinary Problems of Energy Reproduction, Ulyanovsk State Technical University, 32, Severny Venets St., 432027 Ulyanovsk, Russia)

Abstract

The process of Levy random walks is considered in view of the constant velocity of a particle. A kinetic equation is obtained that describes the process of walks, and fractional differential equations are obtained that describe the asymptotic behavior of the process. It is shown that, in the case of finite and infinite mathematical expectation of paths, these equations have a completely different form. To solve the obtained equations, the method of local estimation of the Monte Carlo method is described. The solution algorithm is described and the advantages and disadvantages of the considered method are indicated.

Suggested Citation

  • Viacheslav V. Saenko & Vladislav N. Kovalnogov & Ruslan V. Fedorov & Yuri E. Chamchiyan, 2021. "Numerical Solution to Anomalous Diffusion Equations for Levy Walks," Mathematics, MDPI, vol. 9(24), pages 1-17, December.
  • Handle: RePEc:gam:jmathe:v:9:y:2021:i:24:p:3219-:d:701213
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/9/24/3219/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/9/24/3219/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Uchaikin, Vladimir V., 1998. "Anomalous transport equations and their application to fractal walking," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 255(1), pages 65-92.
    2. Saenko, Viacheslav V., 2016. "The influence of the finite velocity on spatial distribution of particles in the frame of Levy walk model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 444(C), pages 765-782.
    3. Souza, J.W.G. & Santos, A.A.B. & Guarieiro, L.L.N. & Moret, M.A., 2015. "Fractal aspects in O2 enriched combustion," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 434(C), pages 268-272.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Camelia Petrescu & Valeriu David, 2022. "Preface to the Special Issue on “Modelling and Simulation in Engineering”," Mathematics, MDPI, vol. 10(14), pages 1-3, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Viacheslav V. Saenko & Vladislav N. Kovalnogov & Ruslan V. Fedorov & Dmitry A. Generalov & Ekaterina V. Tsvetova, 2022. "Numerical Method for Solving of the Anomalous Diffusion Equation Based on a Local Estimate of the Monte Carlo Method," Mathematics, MDPI, vol. 10(3), pages 1-19, February.
    2. Pereira, A.P.P. & Fernandes, J.P. & Atman, A.P.F. & Acebal, J.L., 2018. "Parameter calibration between models and simulations: Connecting linear and non-linear descriptions of anomalous diffusion," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 509(C), pages 369-382.
    3. Lahmiri, Salim, 2016. "Clustering of Casablanca stock market based on hurst exponent estimates," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 456(C), pages 310-318.
    4. Uchaikin, V.V. & Sibatov, R.T., 2017. "Fractional derivatives on cosmic scales," Chaos, Solitons & Fractals, Elsevier, vol. 102(C), pages 197-209.
    5. Saenko, Viacheslav V., 2016. "The influence of the finite velocity on spatial distribution of particles in the frame of Levy walk model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 444(C), pages 765-782.
    6. Lahmiri, Salim, 2017. "On fractality and chaos in Moroccan family business stock returns and volatility," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 473(C), pages 29-39.
    7. Filho, A.S. Nascimento & Araújo, M.L.V. & Miranda, J.G.V. & Murari, T.B. & Saba, H. & Moret, M.A., 2018. "Self-affinity and self-organized criticality applied to the relationship between the economic arrangements and the dengue fever spread in Bahia," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 502(C), pages 619-628.
    8. Rukolaine, Sergey A., 2016. "Generalized linear Boltzmann equation, describing non-classical particle transport, and related asymptotic solutions for small mean free paths," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 450(C), pages 205-216.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:9:y:2021:i:24:p:3219-:d:701213. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.