IDEAS home Printed from https://ideas.repec.org/a/eee/bracre/v54y2022i5s0890838922000257.html
   My bibliography  Save this article

Predicting industry sectors from financial statements: An illustration of machine learning in accounting research

Author

Listed:
  • van der Heijden, Hans

Abstract

The main aim and contribution of this study is to outline and demonstrate the usefulness of a machine learning approach to address prediction-based research problems in accounting research, and to contrast this approach with a more conventional explanation-based approach familiar to most accounting scholars. To illustrate the approach, the study applies machine learning to predict a firm's industry sector using the firm's publicly available financial statement data. The results show that an algorithm can predict an industry sector with just this data to a high degree of accuracy, especially if a non-linear classifier is used instead of a linear classifier. Additionally, the algorithms were able to carry out an industry-firm pairing exercise taken from introductory accounting text books and MBA cases, with predicted answers showing a high degree of accuracy in carrying out this exercise. The study shows how machine learning approaches and algorithms can be valuable to a range of accounting domains where prediction rather than explanation of the dependent variable is the main area of concern.

Suggested Citation

  • van der Heijden, Hans, 2022. "Predicting industry sectors from financial statements: An illustration of machine learning in accounting research," The British Accounting Review, Elsevier, vol. 54(5).
  • Handle: RePEc:eee:bracre:v:54:y:2022:i:5:s0890838922000257
    DOI: 10.1016/j.bar.2022.101096
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0890838922000257
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.bar.2022.101096?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yang Bao & Bin Ke & Bin Li & Y. Julia Yu & Jie Zhang, 2020. "Detecting Accounting Fraud in Publicly Traded U.S. Firms Using a Machine Learning Approach," Journal of Accounting Research, Wiley Blackwell, vol. 58(1), pages 199-235, March.
    2. Jon Kleinberg & Jens Ludwig & Sendhil Mullainathan & Ziad Obermeyer, 2015. "Prediction Policy Problems," American Economic Review, American Economic Association, vol. 105(5), pages 491-495, May.
    3. Abad, P. & Ferreras, R. & Robles, M.D., 2020. "Intra-industry transfer effects of credit risk news: Rated versus unrated rivals," The British Accounting Review, Elsevier, vol. 52(1).
    4. Kahle, Kathleen M. & Walkling, Ralph A., 1996. "The Impact of Industry Classifications on Financial Research," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 31(3), pages 309-335, September.
    5. Kathleen M. Kahle & Ralph A. Walkling, "undated". "The Impact of Industry Classifications on Financial Research," Research in Financial Economics 9607, Ohio State University.
    6. Balcaen, Sofie & Ooghe, Hubert, 2006. "35 years of studies on business failure: an overview of the classic statistical methodologies and their related problems," The British Accounting Review, Elsevier, vol. 38(1), pages 63-93.
    7. Ravi Kumar, P. & Ravi, V., 2007. "Bankruptcy prediction in banks and firms via statistical and intelligent techniques - A review," European Journal of Operational Research, Elsevier, vol. 180(1), pages 1-28, July.
    8. Dalziel, Margaret, 2007. "A systems-based approach to industry classification," Research Policy, Elsevier, vol. 36(10), pages 1559-1574, December.
    9. Jackson, Richard H.G. & Wood, Anthony, 2013. "The performance of insolvency prediction and credit risk models in the UK: A comparative study," The British Accounting Review, Elsevier, vol. 45(3), pages 183-202.
    10. Sanjeev Bhojraj & Charles M. C. Lee & Derek K. Oler, 2003. "What's My Line? A Comparison of Industry Classification Schemes for Capital Market Research," Journal of Accounting Research, Wiley Blackwell, vol. 41(5), pages 745-774, December.
    11. Clarke, Richard N, 1989. "SICs as Delineators of Economic Markets," The Journal of Business, University of Chicago Press, vol. 62(1), pages 17-31, January.
    12. Kou, Wenchao & Hussain, Simon, 2007. "Predictive gains to segmental disclosure matrices, geographic information and industry sector comparability," The British Accounting Review, Elsevier, vol. 39(3), pages 183-195.
    13. Edward I. Altman, 1968. "Financial Ratios, Discriminant Analysis And The Prediction Of Corporate Bankruptcy," Journal of Finance, American Finance Association, vol. 23(4), pages 589-609, September.
    14. Jayanthi Krishnan & Eric Press, 2003. "The North American Industry Classification System and Its Implications for Accounting Research," Contemporary Accounting Research, John Wiley & Sons, vol. 20(4), pages 685-717, December.
    15. Gerard Hoberg & Gordon Phillips, 2016. "Text-Based Network Industries and Endogenous Product Differentiation," Journal of Political Economy, University of Chicago Press, vol. 124(5), pages 1423-1465.
    16. Edward I. Altman, 1968. "The Prediction Of Corporate Bankruptcy: A Discriminant Analysis," Journal of Finance, American Finance Association, vol. 23(1), pages 193-194, March.
    17. Ohlson, Ja, 1980. "Financial Ratios And The Probabilistic Prediction Of Bankruptcy," Journal of Accounting Research, Wiley Blackwell, vol. 18(1), pages 109-131.
    18. Fan, Joseph P H & Lang, Larry H P, 2000. "The Measurement of Relatedness: An Application to Corporate Diversification," The Journal of Business, University of Chicago Press, vol. 73(4), pages 629-660, October.
    19. Merridee Bujaki & Sylvain Durocher, 2012. "Industry Identification through Ratio Analysis," Accounting Perspectives, John Wiley & Sons, vol. 11(4), pages 315-322, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Rahman, Md Jahidur & Zhu, Hongtao, 2024. "Detecting accounting fraud in family firms: Evidence from machine learning approaches," Advances in accounting, Elsevier, vol. 64(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kumar, Rahul & Deb, Soumya Guha & Mukherjee, Shubhadeep, 2020. "Do words reveal the latent truth? Identifying communication patterns of corporate losers," Journal of Behavioral and Experimental Finance, Elsevier, vol. 26(C).
    2. Brickley, James A. & Zimmerman, Jerold L., 2010. "Corporate governance myths: Comments on Armstrong, Guay, and Weber," Journal of Accounting and Economics, Elsevier, vol. 50(2-3), pages 235-245, December.
    3. Chunxia, Yang & Xueshuai, Zhu & Luoluo, Jiang & Sen, Hu & He, Li, 2016. "Study on the contagion among American industries," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 444(C), pages 601-612.
    4. Zhou, Fanyin & Fu, Lijun & Li, Zhiyong & Xu, Jiawei, 2022. "The recurrence of financial distress: A survival analysis," International Journal of Forecasting, Elsevier, vol. 38(3), pages 1100-1115.
    5. Serrano-Cinca, Carlos & Gutiérrez-Nieto, Begoña & Bernate-Valbuena, Martha, 2019. "The use of accounting anomalies indicators to predict business failure," European Management Journal, Elsevier, vol. 37(3), pages 353-375.
    6. Mousavi, Mohammad M. & Ouenniche, Jamal & Xu, Bing, 2015. "Performance evaluation of bankruptcy prediction models: An orientation-free super-efficiency DEA-based framework," International Review of Financial Analysis, Elsevier, vol. 42(C), pages 64-75.
    7. Hyunjung Nam & Won Gyun No & Youngsu Lee, 2017. "Are Commercial Financial Databases Reliable? New Evidence from Korea," Sustainability, MDPI, vol. 9(8), pages 1-23, August.
    8. David Veganzones, 2022. "Corporate failure prediction using threshold‐based models," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 41(5), pages 956-979, August.
    9. Mohammad Mahdi Mousavi & Jamal Ouenniche & Kaoru Tone, 2023. "A dynamic performance evaluation of distress prediction models," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 42(4), pages 756-784, July.
    10. repec:ctc:sdimse:dime19_03 is not listed on IDEAS
    11. du Jardin, Philippe, 2015. "Bankruptcy prediction using terminal failure processes," European Journal of Operational Research, Elsevier, vol. 242(1), pages 286-303.
    12. Zeineb Affes & Rania Hentati-Kaffel, 2016. "Predicting US banks bankruptcy: logit versus Canonical Discriminant analysis," Post-Print halshs-01281948, HAL.
    13. repec:hum:wpaper:sfb649dp2005-062 is not listed on IDEAS
    14. Yasser Alhenawi & Martha L. Stilwell, 2019. "Toward a complete definition of relatedness in merger and acquisition transactions," Review of Quantitative Finance and Accounting, Springer, vol. 53(2), pages 351-396, August.
    15. Zeineb Affes & Rania Hentati-Kaffel, 2016. "Predicting US banks bankruptcy: logit versus Canonical Discriminant analysis," Documents de travail du Centre d'Economie de la Sorbonne 16016, Université Panthéon-Sorbonne (Paris 1), Centre d'Economie de la Sorbonne.
    16. Soo Young Kim, 2018. "Predicting hospitality financial distress with ensemble models: the case of US hotels, restaurants, and amusement and recreation," Service Business, Springer;Pan-Pacific Business Association, vol. 12(3), pages 483-503, September.
    17. Tomasz Korol, 2019. "Dynamic Bankruptcy Prediction Models for European Enterprises," JRFM, MDPI, vol. 12(4), pages 1-15, December.
    18. Scalzer, Rodrigo S. & Rodrigues, Adriano & Macedo, Marcelo Álvaro da S. & Wanke, Peter, 2019. "Financial distress in electricity distributors from the perspective of Brazilian regulation," Energy Policy, Elsevier, vol. 125(C), pages 250-259.
    19. fernández, María t. Tascón & gutiérrez, Francisco J. Castaño, 2012. "Variables y Modelos Para La Identificación y Predicción Del Fracaso Empresarial: Revisión de La Investigación Empírica Reciente," Revista de Contabilidad - Spanish Accounting Review, Elsevier, vol. 15(1), pages 7-58.
    20. Bagnara, Matteo & Goodarzi, Milad, 2023. "Clustering-based sector investing," SAFE Working Paper Series 397, Leibniz Institute for Financial Research SAFE.
    21. Koen W. de Bock, 2017. "The best of two worlds: Balancing model strength and comprehensibility in business failure prediction using spline-rule ensembles," Post-Print hal-01588059, HAL.
    22. Hyeongjun Kim & Hoon Cho & Doojin Ryu, 2020. "Corporate Default Predictions Using Machine Learning: Literature Review," Sustainability, MDPI, vol. 12(16), pages 1-11, August.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:bracre:v:54:y:2022:i:5:s0890838922000257. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/the-british-accounting-review .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.