IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v95y2012icp246-252.html
   My bibliography  Save this article

Thermal simulation of composite high conductivity laminated microencapsulated phase change material (MEPCM) board

Author

Listed:
  • Darkwa, J.
  • Su, O.

Abstract

In this paper, 3-dimensional geometric models have been developed to evaluate the particle distribution effect on the thermal performance of a composite high conductivity laminated MEPCM board. For the purpose of comparison three geometric configurations (rectangular, triangular and pyramidal) were considered for the distribution network. Copper foam was used as the base material for fixing the positions of the MEPCM particles and to enhance the thermal conductivity of the composite laminated board. The simulation results show that the thermal response times for the rectangular and triangular geometries were about half that of the pyramidal geometry during cooling and heating processes of the board. Even though there were no significant differences in their effective thermal conductivities, the values were more than ten (10) times that of pure MEPCM but suffered from a reduction in energy storage capacities by about 48%. Other methods of enhancing both thermal conductivity and energy storage are therefore encouraged.

Suggested Citation

  • Darkwa, J. & Su, O., 2012. "Thermal simulation of composite high conductivity laminated microencapsulated phase change material (MEPCM) board," Applied Energy, Elsevier, vol. 95(C), pages 246-252.
  • Handle: RePEc:eee:appene:v:95:y:2012:i:c:p:246-252
    DOI: 10.1016/j.apenergy.2012.02.062
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261912001638
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2012.02.062?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Fan, Liwu & Khodadadi, J.M., 2011. "Thermal conductivity enhancement of phase change materials for thermal energy storage: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(1), pages 24-46, January.
    2. Darkwa, K., 2007. "Quasi-isotropic laminated phase-change material system," Applied Energy, Elsevier, vol. 84(6), pages 599-607, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lv, Song & Yang, Jiahao & Ren, Juwen & Zhang, Bolong & Lai, Yin & Chang, Zhihao, 2023. "Research and numerical analysis on performance optimization of photovoltaic-thermoelectric system incorporated with phase change materials," Energy, Elsevier, vol. 263(PC).
    2. Ye, Hong & Long, Linshuang & Zhang, Haitao & Zou, Ruqiang, 2014. "The performance evaluation of shape-stabilized phase change materials in building applications using energy saving index," Applied Energy, Elsevier, vol. 113(C), pages 1118-1126.
    3. Salunkhe, Pramod B. & Shembekar, Prashant S., 2012. "A review on effect of phase change material encapsulation on the thermal performance of a system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(8), pages 5603-5616.
    4. Sun, Xiaoqin & Zhang, Quan & Medina, Mario A. & Liao, Shuguang, 2015. "Performance of a free-air cooling system for telecommunications base stations using phase change materials (PCMs): In-situ tests," Applied Energy, Elsevier, vol. 147(C), pages 325-334.
    5. Pointner, Harald & Steinmann, Wolf-Dieter, 2016. "Experimental demonstration of an active latent heat storage concept," Applied Energy, Elsevier, vol. 168(C), pages 661-671.
    6. Al-abidi, Abduljalil A. & Bin Mat, Sohif & Sopian, K. & Sulaiman, M.Y. & Mohammed, Abdulrahman Th., 2013. "CFD applications for latent heat thermal energy storage: a review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 20(C), pages 353-363.
    7. Darkwa, J. & Calautit, J. & Du, D. & Kokogianakis, G., 2019. "A numerical and experimental analysis of an integrated TEG-PCM power enhancement system for photovoltaic cells," Applied Energy, Elsevier, vol. 248(C), pages 688-701.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fan, Li-Wu & Fang, Xin & Wang, Xiao & Zeng, Yi & Xiao, Yu-Qi & Yu, Zi-Tao & Xu, Xu & Hu, Ya-Cai & Cen, Ke-Fa, 2013. "Effects of various carbon nanofillers on the thermal conductivity and energy storage properties of paraffin-based nanocomposite phase change materials," Applied Energy, Elsevier, vol. 110(C), pages 163-172.
    2. Zhang, Nan & Yuan, Yanping & Du, Yanxia & Cao, Xiaoling & Yuan, Yaguang, 2014. "Preparation and properties of palmitic-stearic acid eutectic mixture/expanded graphite composite as phase change material for energy storage," Energy, Elsevier, vol. 78(C), pages 950-956.
    3. Hu, Nan & Li, Zi-Rui & Xu, Zhe-Wen & Fan, Li-Wu, 2022. "Rapid charging for latent heat thermal energy storage: A state-of-the-art review of close-contact melting," Renewable and Sustainable Energy Reviews, Elsevier, vol. 155(C).
    4. Wang, X.J. & Li, X.F. & Xu, Y.H. & Zhu, D.S., 2014. "Thermal energy storage characteristics of Cu–H2O nanofluids," Energy, Elsevier, vol. 78(C), pages 212-217.
    5. Gunjo, Dawit Gudeta & Jena, Smruti Ranjan & Mahanta, Pinakeswar & Robi, P.S., 2018. "Melting enhancement of a latent heat storage with dispersed Cu, CuO and Al2O3 nanoparticles for solar thermal application," Renewable Energy, Elsevier, vol. 121(C), pages 652-665.
    6. Tao, Y.B. & He, Ya-Ling, 2018. "A review of phase change material and performance enhancement method for latent heat storage system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 93(C), pages 245-259.
    7. Yuan, Yanping & Zhang, Nan & Li, Tianyu & Cao, Xiaoling & Long, Weiyue, 2016. "Thermal performance enhancement of palmitic-stearic acid by adding graphene nanoplatelets and expanded graphite for thermal energy storage: A comparative study," Energy, Elsevier, vol. 97(C), pages 488-497.
    8. Randeep Singh & Sadegh Sadeghi & Bahman Shabani, 2018. "Thermal Conductivity Enhancement of Phase Change Materials for Low-Temperature Thermal Energy Storage Applications," Energies, MDPI, vol. 12(1), pages 1-20, December.
    9. Xu, Bin & Xie, Xing & Pei, Gang & Chen, Xing-ni, 2020. "New view point on the effect of thermal conductivity on phase change materials based on novel concepts of relative depth of activation and time rate of activation: The case study on a top floor room," Applied Energy, Elsevier, vol. 266(C).
    10. Fornarelli, F. & Camporeale, S.M. & Fortunato, B. & Torresi, M. & Oresta, P. & Magliocchetti, L. & Miliozzi, A. & Santo, G., 2016. "CFD analysis of melting process in a shell-and-tube latent heat storage for concentrated solar power plants," Applied Energy, Elsevier, vol. 164(C), pages 711-722.
    11. Rahimi, Elnaz & Babapoor, Aziz & Moradi, Gholamreza & Kalantari, Saba & Monazzam Esmaeelpour, Mohammadreza, 2024. "Personal cooling garments and phase change materials: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 190(PB).
    12. Ahmed Hassan & Mohammad Shakeel Laghari & Yasir Rashid, 2016. "Micro-Encapsulated Phase Change Materials: A Review of Encapsulation, Safety and Thermal Characteristics," Sustainability, MDPI, vol. 8(10), pages 1-32, October.
    13. Fan, Li-Wu & Yao, Xiao-Li & Wang, Xiao & Wu, Yu-Yue & Liu, Xue-Ling & Xu, Xu & Yu, Zi-Tao, 2015. "Non-isothermal crystallization of aqueous nanofluids with high aspect-ratio carbon nano-additives for cold thermal energy storage," Applied Energy, Elsevier, vol. 138(C), pages 193-201.
    14. Song, Yanlin & Zhang, Nan & Yuan, Yanping & Yang, Li & Cao, Xiaoling, 2019. "Prediction of the solid effective thermal conductivity of fatty acid/carbon material composite phase change materials based on fractal theory," Energy, Elsevier, vol. 170(C), pages 752-762.
    15. Tay, N.H.S. & Belusko, M. & Bruno, F., 2012. "Experimental investigation of tubes in a phase change thermal energy storage system," Applied Energy, Elsevier, vol. 90(1), pages 288-297.
    16. Vitorino, Nuno & Abrantes, João C.C. & Frade, Jorge Ribeiro, 2013. "Gelled graphite/gelatin composites for latent heat cold storage," Applied Energy, Elsevier, vol. 104(C), pages 890-897.
    17. Rao, Zhonghao & Wang, Shuangfeng & Peng, Feifei, 2012. "Self diffusion of the nano-encapsulated phase change materials: A molecular dynamics study," Applied Energy, Elsevier, vol. 100(C), pages 303-308.
    18. Salunkhe, Pramod B. & Shembekar, Prashant S., 2012. "A review on effect of phase change material encapsulation on the thermal performance of a system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(8), pages 5603-5616.
    19. Zhou, Dan & Wu, Shaowen & Wu, Zhigen & Yu, Xingjuan, 2021. "Thermal performance analysis of multi-slab phase change thermal energy storage unit with heat transfer enhancement approaches," Renewable Energy, Elsevier, vol. 172(C), pages 46-56.
    20. Longeon, Martin & Soupart, Adèle & Fourmigué, Jean-François & Bruch, Arnaud & Marty, Philippe, 2013. "Experimental and numerical study of annular PCM storage in the presence of natural convection," Applied Energy, Elsevier, vol. 112(C), pages 175-184.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:95:y:2012:i:c:p:246-252. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.