IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v93y2012icp668-674.html
   My bibliography  Save this article

Stochastic modeling of the energy supply system with uncertain fuel price – A case of emerging technologies for distributed power generation

Author

Listed:
  • Mirkhani, Sh.
  • Saboohi, Y.

Abstract

A deterministic energy supply model with bottom-up structure has limited capability in handling the uncertainties. To enhance the applicability of such a model in an uncertain environment two main issues have been investigated in the present paper. First, a binomial lattice is generated based on the stochastic nature of the source of uncertainty. Second, an energy system model (ESM) has been reformulated as a multistage stochastic problem. The result of the application of the modified energy model encompasses all uncertain outcomes together and enables optimal timing of capacity expansion. The performance of the model has been demonstrated with the help of a case study. The case study has been formulated on the assumption that a gas fired engine competes with renewable energy technologies in an uncertain environment where the price of natural gas is volatile. The result of stochastic model has then been compared with those of a deterministic model by studying the expected value of perfect information (EVPI) and the value of stochastic solution (VSS). Finally the results of the sensitivity analysis have been discussed where the characteristics of uncertainty of the price of fuel are varied.

Suggested Citation

  • Mirkhani, Sh. & Saboohi, Y., 2012. "Stochastic modeling of the energy supply system with uncertain fuel price – A case of emerging technologies for distributed power generation," Applied Energy, Elsevier, vol. 93(C), pages 668-674.
  • Handle: RePEc:eee:appene:v:93:y:2012:i:c:p:668-674
    DOI: 10.1016/j.apenergy.2011.12.099
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261912000049
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2011.12.099?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Chicco, Gianfranco & Mancarella, Pierluigi, 2009. "Distributed multi-generation: A comprehensive view," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(3), pages 535-551, April.
    2. Zangeneh, Ali & Jadid, Shahram & Rahimi-Kian, Ashkan, 2009. "A hierarchical decision making model for the prioritization of distributed generation technologies: A case study for Iran," Energy Policy, Elsevier, vol. 37(12), pages 5752-5763, December.
    3. Kumbaroglu, Gürkan & Madlener, Reinhard & Demirel, Mustafa, 2008. "A real options evaluation model for the diffusion prospects of new renewable power generation technologies," Energy Economics, Elsevier, vol. 30(4), pages 1882-1908, July.
    4. Avinash K. Dixit & Robert S. Pindyck, 1994. "Investment under Uncertainty," Economics Books, Princeton University Press, edition 1, number 5474.
    5. Al-Othman, Wafa B.E. & Lababidi, Haitham M.S. & Alatiqi, Imad M. & Al-Shayji, Khawla, 2008. "Supply chain optimization of petroleum organization under uncertainty in market demands and prices," European Journal of Operational Research, Elsevier, vol. 189(3), pages 822-840, September.
    6. Krukanont, Pongsak & Tezuka, Tetsuo, 2007. "Implications of capacity expansion under uncertainty and value of information: The near-term energy planning of Japan," Energy, Elsevier, vol. 32(10), pages 1809-1824.
    7. Mallah, Subhash & Bansal, N.K., 2011. "Parametric sensitivity analysis for techno-economic parameters in Indian power sector," Applied Energy, Elsevier, vol. 88(3), pages 622-629, March.
    8. Laureano Escudero & Araceli Garín & María Merino & Gloria Pérez, 2007. "The value of the stochastic solution in multistage problems," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 15(1), pages 48-64, July.
    9. Urban, F. & Benders, R.M.J. & Moll, H.C., 2007. "Modelling energy systems for developing countries," Energy Policy, Elsevier, vol. 35(6), pages 3473-3482, June.
    10. Jebaraj, S. & Iniyan, S., 2006. "A review of energy models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 10(4), pages 281-311, August.
    11. Axelsson, E. & Harvey, S. & Berntsson, T., 2009. "A tool for creating energy market scenarios for evaluation of investments in energy intensive industry," Energy, Elsevier, vol. 34(12), pages 2069-2074.
    12. Cox, John C. & Ross, Stephen A. & Rubinstein, Mark, 1979. "Option pricing: A simplified approach," Journal of Financial Economics, Elsevier, vol. 7(3), pages 229-263, September.
    13. Krey, Volker & Martinsen, Dag & Wagner, Hermann-Josef, 2007. "Effects of stochastic energy prices on long-term energy-economic scenarios," Energy, Elsevier, vol. 32(12), pages 2340-2349.
    14. Hu, Ming-Che & Hobbs, Benjamin F., 2010. "Analysis of multi-pollutant policies for the U.S. power sector under technology and policy uncertainty using MARKAL," Energy, Elsevier, vol. 35(12), pages 5430-5442.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Fadhil Y. Al-Aboosi & Mahmoud M. El-Halwagi, 2019. "A Stochastic Optimization Approach to the Design of Shale Gas/Oil Wastewater Treatment Systems with Multiple Energy Sources under Uncertainty," Sustainability, MDPI, vol. 11(18), pages 1-39, September.
    2. Mavromatidis, Georgios & Orehounig, Kristina & Carmeliet, Jan, 2018. "Uncertainty and global sensitivity analysis for the optimal design of distributed energy systems," Applied Energy, Elsevier, vol. 214(C), pages 219-238.
    3. Ahmadi, Somayeh & Saboohi, Yadollah & Vakili, Ali, 2021. "Frameworks, quantitative indicators, characters, and modeling approaches to analysis of energy system resilience: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).
    4. Fürsch, Michaela & Hagspiel, Simeon & Jägemann, Cosima & Nagl, Stephan & Lindenberger, Dietmar & Tröster, Eckehard, 2013. "The role of grid extensions in a cost-efficient transformation of the European electricity system until 2050," Applied Energy, Elsevier, vol. 104(C), pages 642-652.
    5. Carlo Bianca, 2022. "On the Modeling of Energy-Multisource Networks by the Thermostatted Kinetic Theory Approach: A Review with Research Perspectives," Energies, MDPI, vol. 15(21), pages 1-22, October.
    6. Jorge Chebeir & Aryan Geraili & Jose Romagnoli, 2017. "Development of Shale Gas Supply Chain Network under Market Uncertainties," Energies, MDPI, vol. 10(2), pages 1-31, February.
    7. Mavromatidis, Georgios & Orehounig, Kristina & Carmeliet, Jan, 2018. "A review of uncertainty characterisation approaches for the optimal design of distributed energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 88(C), pages 258-277.
    8. Deng, Qianli & Jiang, Xianglin & Cui, Qingbin & Zhang, Limao, 2015. "Strategic design of cost savings guarantee in energy performance contracting under uncertainty," Applied Energy, Elsevier, vol. 139(C), pages 68-80.
    9. Àlex Alonso-Travesset & Diederik Coppitters & Helena Martín & Jordi de la Hoz, 2023. "Economic and Regulatory Uncertainty in Renewable Energy System Design: A Review," Energies, MDPI, vol. 16(2), pages 1-30, January.
    10. Hafeznia, Hamed & Stojadinović, Božidar, 2023. "ResQ-IOS: An iterative optimization-based simulation framework for quantifying the resilience of interdependent critical infrastructure systems to natural hazards," Applied Energy, Elsevier, vol. 349(C).
    11. Abokersh, Mohamed Hany & Vallès, Manel & Cabeza, Luisa F. & Boer, Dieter, 2020. "A framework for the optimal integration of solar assisted district heating in different urban sized communities: A robust machine learning approach incorporating global sensitivity analysis," Applied Energy, Elsevier, vol. 267(C).
    12. Locatelli, Giorgio & Invernizzi, Diletta Colette & Mancini, Mauro, 2016. "Investment and risk appraisal in energy storage systems: A real options approach," Energy, Elsevier, vol. 104(C), pages 114-131.
    13. Min, Daiki & Chung, Jaewoo, 2013. "Evaluation of the long-term power generation mix: The case study of South Korea's energy policy," Energy Policy, Elsevier, vol. 62(C), pages 1544-1552.
    14. Petkov, Ivalin & Gabrielli, Paolo, 2020. "Power-to-hydrogen as seasonal energy storage: an uncertainty analysis for optimal design of low-carbon multi-energy systems," Applied Energy, Elsevier, vol. 274(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Svensson, Elin & Strömberg, Ann-Brith & Patriksson, Michael, 2011. "A model for optimization of process integration investments under uncertainty," Energy, Elsevier, vol. 36(5), pages 2733-2746.
    2. Santos, Lúcia & Soares, Isabel & Mendes, Carla & Ferreira, Paula, 2014. "Real Options versus Traditional Methods to assess Renewable Energy Projects," Renewable Energy, Elsevier, vol. 68(C), pages 588-594.
    3. Lee, Shun-Chung & Shih, Li-Hsing, 2010. "Renewable energy policy evaluation using real option model -- The case of Taiwan," Energy Economics, Elsevier, vol. 32(Supplemen), pages 67-78, September.
    4. Ioannou, Anastasia & Angus, Andrew & Brennan, Feargal, 2017. "Risk-based methods for sustainable energy system planning: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 602-615.
    5. Kozlova, Mariia, 2017. "Real option valuation in renewable energy literature: Research focus, trends and design," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 180-196.
    6. Mo, Jianlei & Schleich, Joachim & Fan, Ying, 2018. "Getting ready for future carbon abatement under uncertainty – Key factors driving investment with policy implications," Energy Economics, Elsevier, vol. 70(C), pages 453-464.
    7. Dalbem, Marta Corrêa & Brandão, Luiz Eduardo Teixeira & Gomes, Leonardo Lima, 2014. "Can the regulated market help foster a free market for wind energy in Brazil?," Energy Policy, Elsevier, vol. 66(C), pages 303-311.
    8. Andreas Voss & Reinhard Madlener, 2017. "Auction Schemes, Bidding Strategies and the Cost-Optimal Level of Promoting Renewable Electricity in Germany," The Energy Journal, , vol. 38(1_suppl), pages 229-264, June.
    9. Schachter, J.A. & Mancarella, P., 2016. "A critical review of Real Options thinking for valuing investment flexibility in Smart Grids and low carbon energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 261-271.
    10. Connolly, D. & Lund, H. & Mathiesen, B.V. & Leahy, M., 2010. "A review of computer tools for analysing the integration of renewable energy into various energy systems," Applied Energy, Elsevier, vol. 87(4), pages 1059-1082, April.
    11. Tolis, Athanasios I. & Rentizelas, Athanasios A., 2011. "An impact assessment of electricity and emission allowances pricing in optimised expansion planning of power sector portfolios," Applied Energy, Elsevier, vol. 88(11), pages 3791-3806.
    12. Andreas Voss and Reinhard Madlener, 2017. "Auction Schemes, Bidding Strategies and the Cost-Optimal Level of Promoting Renewable Electricity in Germany," The Energy Journal, International Association for Energy Economics, vol. 0(KAPSARC S).
    13. Felipe Isaza Cuervo & Sergio Botero Boterob, 2014. "Aplicación de las opciones reales en la toma de decisiones en los mercados de electricidad," Estudios Gerenciales, Universidad Icesi, November.
    14. Westner, Günther & Madlener, Reinhard, 2012. "Investment in new power generation under uncertainty: Benefits of CHP vs. condensing plants in a copula-based analysis," Energy Economics, Elsevier, vol. 34(1), pages 31-44.
    15. Romano, Teresa & Fumagalli, Elena, 2018. "Greening the power generation sector: Understanding the role of uncertainty," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 272-286.
    16. Liu, Haomin & Zhang, Zaixu & Zhang, Tao, 2022. "Shale gas investment decision-making: Green and efficient development under market, technology and environment uncertainties," Applied Energy, Elsevier, vol. 306(PA).
    17. Martín-Barrera, Gonzalo & Zamora-Ramírez, Constancio & González-González, José M., 2016. "Application of real options valuation for analysing the impact of public R&D financing on renewable energy projects: A company′s perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 63(C), pages 292-301.
    18. Pringles, Rolando & Olsina, Fernando & Penizzotto, Franco, 2020. "Valuation of defer and relocation options in photovoltaic generation investments by a stochastic simulation-based method," Renewable Energy, Elsevier, vol. 151(C), pages 846-864.
    19. Kim, Amy M. & Li, Huanan, 2020. "Incorporating the impacts of climate change in transportation infrastructure decision models," Transportation Research Part A: Policy and Practice, Elsevier, vol. 134(C), pages 271-287.
    20. Guedes, José & Santos, Pedro, 2016. "Valuing an offshore oil exploration and production project through real options analysis," Energy Economics, Elsevier, vol. 60(C), pages 377-386.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:93:y:2012:i:c:p:668-674. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.