IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v91y2012i1p439-450.html
   My bibliography  Save this article

Fan air flow analysis and heat transfer enhancement of vehicle underhood cooling system – Towards a new control approach for fuel consumption reduction

Author

Listed:
  • Khaled, Mahmoud
  • Mangi, Fareed
  • Hage, Hisham El
  • Harambat, Fabien
  • Peerhossaini, Hassan

Abstract

We report here experimental results focused on the optimization of vehicle underhood cooling module. These results constitute the basis for a new approach of controlling the cooling module positioning according to the engine energy requirements. Measurements are carried out on a simplified vehicle body designed based on the real vehicle front block. We report here velocity and temperature measurements by Particle Image Velocimetry (PIV), by Laser Doppler Velocimetry (LDV) and by thermocouples. The underhood of the simplified body is instrumented by 59 surface and fluid thermocouples. Measurements are carried out for conditions simulating both the slowdown and the thermal soak phases with the fan in operation. Different fan rotational speeds, radiator water flow and underhood geometries have been experimented. The ultimate aim is to apply the new control approach to a real vehicle so as to reduce the energy delivered to the pump and compressor and therefore to reduce the vehicle fuel consumption.

Suggested Citation

  • Khaled, Mahmoud & Mangi, Fareed & Hage, Hisham El & Harambat, Fabien & Peerhossaini, Hassan, 2012. "Fan air flow analysis and heat transfer enhancement of vehicle underhood cooling system – Towards a new control approach for fuel consumption reduction," Applied Energy, Elsevier, vol. 91(1), pages 439-450.
  • Handle: RePEc:eee:appene:v:91:y:2012:i:1:p:439-450
    DOI: 10.1016/j.apenergy.2011.10.017
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261911006684
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2011.10.017?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Doodman, A.R. & Fesanghary, M. & Hosseini, R., 2009. "A robust stochastic approach for design optimization of air cooled heat exchangers," Applied Energy, Elsevier, vol. 86(7-8), pages 1240-1245, July.
    2. Gholap, A.K. & Khan, J.A., 2007. "Design and multi-objective optimization of heat exchangers for refrigerators," Applied Energy, Elsevier, vol. 84(12), pages 1226-1239, December.
    3. Khaled, Mahmoud & Harambat, Fabien & Hage, Hicham El & Peerhossaini, Hassan, 2011. "Spatial optimization of an underhood cooling module – Towards an innovative control approach," Applied Energy, Elsevier, vol. 88(11), pages 3841-3849.
    4. Guo, Jiangfeng & Xu, Mingtian & Cheng, Lin, 2009. "The application of field synergy number in shell-and-tube heat exchanger optimization design," Applied Energy, Elsevier, vol. 86(10), pages 2079-2087, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Cristian Ferrari & Nicolò Beccati & Francesca Pedrielli, 2023. "CFD Methodology for an Underhood Analysis towards the Optimum Fan Position in a Compact Off-Road Machine," Energies, MDPI, vol. 16(11), pages 1-20, May.
    2. Pengyu Lu & Qing Gao & Liang Lv & Xiaoye Xue & Yan Wang, 2019. "Numerical Calculation Method of Model Predictive Control for Integrated Vehicle Thermal Management Based on Underhood Coupling Thermal Transmission," Energies, MDPI, vol. 12(2), pages 1-27, January.
    3. Khodabakhshian, Mohammad & Feng, Lei & Börjesson, Stefan & Lindgärde, Olof & Wikander, Jan, 2017. "Reducing auxiliary energy consumption of heavy trucks by onboard prediction and real-time optimization," Applied Energy, Elsevier, vol. 188(C), pages 652-671.
    4. Gequn Shu & Chen Hu & Hua Tian & Xiaoya Li & Zhigang Yu & Mingtao Wang, 2019. "Analysis and Optimization of Coupled Thermal Management Systems Used in Vehicles," Energies, MDPI, vol. 12(7), pages 1-17, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sanaye, Sepehr & Hajabdollahi, Hassan, 2010. "Thermal-economic multi-objective optimization of plate fin heat exchanger using genetic algorithm," Applied Energy, Elsevier, vol. 87(6), pages 1893-1902, June.
    2. Khaled, Mahmoud & Harambat, Fabien & Hage, Hicham El & Peerhossaini, Hassan, 2011. "Spatial optimization of an underhood cooling module – Towards an innovative control approach," Applied Energy, Elsevier, vol. 88(11), pages 3841-3849.
    3. Luo, Xianglong & Yi, Zhitong & Zhang, Bingjian & Mo, Songping & Wang, Chao & Song, Mengjie & Chen, Ying, 2017. "Mathematical modelling and optimization of the liquid separation condenser used in organic Rankine cycle," Applied Energy, Elsevier, vol. 185(P2), pages 1309-1323.
    4. Bahadori, Alireza, 2011. "Simple method for estimation of effectiveness in one tube pass and one shell pass counter-flow heat exchangers," Applied Energy, Elsevier, vol. 88(11), pages 4191-4196.
    5. Wong, L.T. & Mui, K.W. & Guan, Y., 2010. "Shower water heat recovery in high-rise residential buildings of Hong Kong," Applied Energy, Elsevier, vol. 87(2), pages 703-709, February.
    6. Manjunath, K. & Kaushik, S.C., 2014. "Second law thermodynamic study of heat exchangers: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 40(C), pages 348-374.
    7. Varun & Siddhartha, 2010. "Thermal performance optimization of a flat plate solar air heater using genetic algorithm," Applied Energy, Elsevier, vol. 87(5), pages 1793-1799, May.
    8. Xu, Yun-Chao & Chen, Qun, 2013. "A theoretical global optimization method for vapor-compression refrigeration systems based on entransy theory," Energy, Elsevier, vol. 60(C), pages 464-473.
    9. Laskowski, Rafał & Smyk, Adam & Lewandowski, Janusz & Rusowicz, Artur & Grzebielec, Andrzej, 2016. "Selecting the cooling water mass flow rate for a power plant under variable load with entropy generation rate minimization," Energy, Elsevier, vol. 107(C), pages 725-733.
    10. Wang, Zhe & Li, Yanzhong, 2016. "A combined method for surface selection and layer pattern optimization of a multistream plate-fin heat exchanger," Applied Energy, Elsevier, vol. 165(C), pages 815-827.
    11. Mahmoud Khaled & Mostafa Mortada & Jalal Faraj & Khaled Chahine & Thierry Lemenand & Haitham S. Ramadan, 2022. "Effect of Airflow Non-Uniformities on the Thermal Performance of Water–Air Heat Exchangers—Experimental Study and Analysis," Energies, MDPI, vol. 15(21), pages 1-14, October.
    12. Jalal Faraj & Khaled Chahine & Mostafa Mortada & Thierry Lemenand & Haitham S. Ramadan & Mahmoud Khaled, 2022. "Eco-Efficient Vehicle Cooling Modules with Integrated Diffusers—Thermal, Energy, and Environmental Analyses," Energies, MDPI, vol. 15(21), pages 1-19, October.
    13. Hossieny, Nemat & Shrestha, Som S. & Owusu, Osei A. & Natal, Manuel & Benson, Rick & Desjarlais, Andre, 2019. "Improving the energy efficiency of a refrigerator-freezer through the use of a novel cabinet/door liner based on polylactide biopolymer," Applied Energy, Elsevier, vol. 235(C), pages 1-9.
    14. Shao, Liang-Liang & Yang, Liang & Zhang, Chun-Lu, 2010. "Comparison of heat pump performance using fin-and-tube and microchannel heat exchangers under frost conditions," Applied Energy, Elsevier, vol. 87(4), pages 1187-1197, April.
    15. Pengyu Lu & Qing Gao & Liang Lv & Xiaoye Xue & Yan Wang, 2019. "Numerical Calculation Method of Model Predictive Control for Integrated Vehicle Thermal Management Based on Underhood Coupling Thermal Transmission," Energies, MDPI, vol. 12(2), pages 1-27, January.
    16. Khodabakhshian, Mohammad & Feng, Lei & Börjesson, Stefan & Lindgärde, Olof & Wikander, Jan, 2017. "Reducing auxiliary energy consumption of heavy trucks by onboard prediction and real-time optimization," Applied Energy, Elsevier, vol. 188(C), pages 652-671.
    17. Cui, Xinying & Guo, Jiangfeng & Huai, Xiulan & Zhang, Haiyan & Cheng, Keyong & Zhou, Jingzhi, 2019. "Numerical investigations on serpentine channel for supercritical CO2 recuperator," Energy, Elsevier, vol. 172(C), pages 517-530.
    18. Cheng, Wen-Long & Mei, Bao-Jun & Liu, Yi-Ning & Huang, Yong-Hua & Yuan, Xu-Dong, 2011. "A novel household refrigerator with shape-stabilized PCM (Phase Change Material) heat storage condensers: An experimental investigation," Energy, Elsevier, vol. 36(10), pages 5797-5804.
    19. Geyer, Philipp & Schlüter, Arno, 2014. "Automated metamodel generation for Design Space Exploration and decision-making – A novel method supporting performance-oriented building design and retrofitting," Applied Energy, Elsevier, vol. 119(C), pages 537-556.
    20. Sanaye, Sepehr & Dehghandokht, Masoud, 2011. "Modeling and multi-objective optimization of parallel flow condenser using evolutionary algorithm," Applied Energy, Elsevier, vol. 88(5), pages 1568-1577, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:91:y:2012:i:1:p:439-450. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.