IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v88y2011i7p2436-2444.html
   My bibliography  Save this article

An analytical model for coupled heat and mass transfer processes in solar collector/regenerator using liquid desiccant

Author

Listed:
  • Peng, Donggen
  • Zhang, Xiaosong

Abstract

Solar collector/regenerator (C/R) using liquid desiccant combines solar photothermic transformation and regeneration of liquid desiccant together, effectively achieving the regeneration for solar energy-driven liquid desiccant cooling systems. In this paper a group of dimensionless heat and mass transfer equations describing the heat and mass transfer process in the solar C/R were obtained by introducing total temperature difference ([Delta]T0) and dimensionless heat loss coefficient . For the sake of predicting the heat loss of air stream and simplifying calculation, the models of dimensionless air temperature ([theta]a) and equilibrium humidity ratio (YeL) along with the height of solar C/R were put forward. An analytical solution was formed by two differential equations on the dimensionless heat and mass transfer driving potentials and the heat and mass conservation equations. Compared with the numerical simulation results, the analytical results on the outlet parameters of solar C/R have great precision with different Lewis factor Le, total temperature difference [Delta]T0 and air-to salt mass flow rate ratio ASMR. Simultaneously, the effects of above variables on the regeneration performance were analyzed. Lastly, by comparing with the experimental data, the analytical calculation results can agree well with the experimental results validating the analytical model is an ideal way for predicting the performance of the solar C/R.

Suggested Citation

  • Peng, Donggen & Zhang, Xiaosong, 2011. "An analytical model for coupled heat and mass transfer processes in solar collector/regenerator using liquid desiccant," Applied Energy, Elsevier, vol. 88(7), pages 2436-2444, July.
  • Handle: RePEc:eee:appene:v:88:y:2011:i:7:p:2436-2444
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306-2619(11)00045-6
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ani, F.N. & Badawi, E.M. & Kannan, K.S., 2005. "The effect of absorber packing height on the performance of a hybrid liquid desiccant system," Renewable Energy, Elsevier, vol. 30(15), pages 2247-2256.
    2. Yang, Ru & Wang, Pai-Lu, 1994. "The optimum glazing height of a glazed solar collector/regenerator for open-cycle absorption cooling," Energy, Elsevier, vol. 19(9), pages 925-931.
    3. Kabeel, A.E., 2005. "Augmentation of the performance of solar regenerator of open absorption cooling system," Renewable Energy, Elsevier, vol. 30(3), pages 327-338.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Angrisani, Giovanni & Roselli, Carlo & Sasso, Maurizio, 2015. "Experimental assessment of the energy performance of a hybrid desiccant cooling system and comparison with other air-conditioning technologies," Applied Energy, Elsevier, vol. 138(C), pages 533-545.
    2. Wang, Xinli & Cai, Wenjian & Lu, Jiangang & Sun, Youxian & Zhao, Lei, 2015. "Model-based optimization strategy of chiller driven liquid desiccant dehumidifier with genetic algorithm," Energy, Elsevier, vol. 82(C), pages 939-948.
    3. Enteria, Napoleon & Yoshino, Hiroshi & Mochida, Akashi, 2013. "Review of the advances in open-cycle absorption air-conditioning systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 28(C), pages 265-289.
    4. Li, Xian & Liu, Shuai & Tan, Kok Kiong & Wang, Qing-Guo & Cai, Wen-Jian & Xie, Lihua, 2016. "Dynamic modeling of a liquid desiccant dehumidifier," Applied Energy, Elsevier, vol. 180(C), pages 435-445.
    5. Ou, Xianhua & Cai, Wenjian & He, Xiongxiong & Zhai, Deqing, 2018. "Experimental investigations on heat and mass transfer performances of a liquid desiccant cooling and dehumidification system," Applied Energy, Elsevier, vol. 220(C), pages 164-175.
    6. Peng, Donggen & Zhang, Xiaosong, 2016. "Experimental investigation on regeneration performance, heat and mass transfer characteristics in a forced solar collector/regenerator," Energy, Elsevier, vol. 101(C), pages 296-308.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Peng, Donggen & Zhang, Xiaosong, 2011. "Modeling and simulation of solar collector/regenerator for liquid desiccant cooling systems," Energy, Elsevier, vol. 36(5), pages 2543-2550.
    2. Peng, Donggen & Zhang, Xiaosong, 2009. "Modeling and performance analysis of solar air pretreatment collector/regenerator using liquid desiccant," Renewable Energy, Elsevier, vol. 34(3), pages 699-705.
    3. Yin, Yonggao & Qian, Junfei & Zhang, Xiaosong, 2014. "Recent advancements in liquid desiccant dehumidification technology," Renewable and Sustainable Energy Reviews, Elsevier, vol. 31(C), pages 38-52.
    4. Elsarrag, Esam & Igobo, Opubo N. & Alhorr, Yousef & Davies, Philip A., 2016. "Solar pond powered liquid desiccant evaporative cooling," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 124-140.
    5. Hassan, H.Z. & Mohamad, A.A., 2012. "A review on solar cold production through absorption technology," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(7), pages 5331-5348.
    6. Peng, Donggen & Luo, Danting & Cheng, Xiaosong, 2018. "Modeling and performance comparisons of the grading and single solar collector/ regenerator systems with heat recovery," Energy, Elsevier, vol. 144(C), pages 736-749.
    7. Mei, L. & Dai, Y.J., 2008. "A technical review on use of liquid-desiccant dehumidification for air-conditioning application," Renewable and Sustainable Energy Reviews, Elsevier, vol. 12(3), pages 662-689, April.
    8. Abdel-Salam, Ahmed H. & Simonson, Carey J., 2016. "State-of-the-art in liquid desiccant air conditioning equipment and systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 1152-1183.
    9. Gezahegn Habtamu Tafesse & Gulam Mohammed Sayeed Ahmed & Irfan Anjum Badruddin & Sarfaraz Kamangar & Mohamed Hussien, 2023. "Estimation of Evaporation of Water from a Liquid Desiccant Solar Collector and Regenerator by Using Conservation of Mass and Energy Principles," Sustainability, MDPI, vol. 15(8), pages 1-18, April.
    10. Peng, Donggen & Zhang, Xiaosong, 2016. "Experimental investigation on regeneration performance, heat and mass transfer characteristics in a forced solar collector/regenerator," Energy, Elsevier, vol. 101(C), pages 296-308.
    11. Fekadu, Geleta & Subudhi, Sudhakar, 2018. "Renewable energy for liquid desiccants air conditioning system: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 93(C), pages 364-379.
    12. Min-Hwi Kim & Joon-Young Park & Jae-Weon Jeong, 2017. "Energy Saving Potential of a Thermoelectric Heat Pump-Assisted Liquid Desiccant System in a Dedicated Outdoor Air System," Energies, MDPI, vol. 10(9), pages 1-19, September.
    13. Mohammad, Abdulrahman Th. & Bin Mat, Sohif & Sulaiman, M.Y. & Sopian, K. & Al-abidi, Abduljalil A., 2013. "Survey of hybrid liquid desiccant air conditioning systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 20(C), pages 186-200.
    14. Shukla, Dhruvin L. & Modi, Kalpesh V., 2017. "A technical review on regeneration of liquid desiccant using solar energy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 517-529.
    15. Bergero, Stefano & Chiari, Anna, 2011. "On the performances of a hybrid air-conditioning system in different climatic conditions," Energy, Elsevier, vol. 36(8), pages 5261-5273.
    16. Yinglin, Li & Xiaosong, Zhang & Laizai, Tan & Zhongbin, Zhang & Wei, Wu & Xueying, Xia, 2016. "Performance analysis of a novel liquid desiccant-vapor compression hybrid air-conditioning system," Energy, Elsevier, vol. 109(C), pages 180-189.
    17. Farah G. Fahad & Shurooq T. Al-Humairi & Amged T. Al-Ezzi & Hasan Sh. Majdi & Abbas J. Sultan & Thaqal M. Alhuzaymi & Thaar M. Aljuwaya, 2023. "Advancements in Liquid Desiccant Technologies: A Comprehensive Review of Materials, Systems, and Applications," Sustainability, MDPI, vol. 15(18), pages 1-23, September.
    18. Shukla, D.L. & Modi, K.V., 2022. "Influence of distinct input parameters on performance indices of dehumidifier, regenerator and on liquid desiccant-operated evaporative cooling system – A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    19. She, Xiaohui & Yin, Yonggao & Zhang, Xiaosong, 2015. "Suggested solution concentration for an energy-efficient refrigeration system combined with condensation heat-driven liquid desiccant cycle," Renewable Energy, Elsevier, vol. 83(C), pages 553-564.
    20. Peng, Donggen & Luo, Danting, 2017. "Modeling and parametrical analysis on internally-heated liquid desiccant regenerator in liquid desiccant air conditioning," Energy, Elsevier, vol. 141(C), pages 461-471.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:88:y:2011:i:7:p:2436-2444. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.