IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v30y2005i3p327-338.html
   My bibliography  Save this article

Augmentation of the performance of solar regenerator of open absorption cooling system

Author

Listed:
  • Kabeel, A.E.

Abstract

In open cycle liquid desiccant air conditioning, the solar collector regenerator is one of the effective ways of regenerating liquid solution. In this work, the regeneration of liquid solution using cross flow of air stream with flowing film of desiccant on the surface of a solar collector/regenerator has been investigated. To evaluate the effect of cross flow of air stream on the performance of the unit, two identical units are constructed and tested in the same conditions of operation. One of the two units was augmented with air blower. The absorber plate is a black cloth layer. The forced air stream, which flows across the absorber removes the moisture from the liquid solution. The regeneration in the other collector/regenerator unit is free. The results show enhancement of regeneration efficiency for the forced cross flow compared with the free regeneration. The effect of concentration and flow rate on the performance is discussed. Two relations for regeneration efficiency as a function of concentration for the two units are introduced.

Suggested Citation

  • Kabeel, A.E., 2005. "Augmentation of the performance of solar regenerator of open absorption cooling system," Renewable Energy, Elsevier, vol. 30(3), pages 327-338.
  • Handle: RePEc:eee:renene:v:30:y:2005:i:3:p:327-338
    DOI: 10.1016/j.renene.2004.03.013
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148104001235
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2004.03.013?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kabeel, A.E., 2007. "Solar powered air conditioning system using rotary honeycomb desiccant wheel," Renewable Energy, Elsevier, vol. 32(11), pages 1842-1857.
    2. Hassan, H.Z. & Mohamad, A.A., 2012. "A review on solar cold production through absorption technology," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(7), pages 5331-5348.
    3. Gezahegn Habtamu Tafesse & Gulam Mohammed Sayeed Ahmed & Irfan Anjum Badruddin & Sarfaraz Kamangar & Mohamed Hussien, 2023. "Estimation of Evaporation of Water from a Liquid Desiccant Solar Collector and Regenerator by Using Conservation of Mass and Energy Principles," Sustainability, MDPI, vol. 15(8), pages 1-18, April.
    4. Lychnos, G. & Davies, P.A., 2012. "Modelling and experimental verification of a solar-powered liquid desiccant cooling system for greenhouse food production in hot climates," Energy, Elsevier, vol. 40(1), pages 116-130.
    5. Elsarrag, Esam & Igobo, Opubo N. & Alhorr, Yousef & Davies, Philip A., 2016. "Solar pond powered liquid desiccant evaporative cooling," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 124-140.
    6. Peng, Donggen & Zhang, Xiaosong, 2011. "Modeling and simulation of solar collector/regenerator for liquid desiccant cooling systems," Energy, Elsevier, vol. 36(5), pages 2543-2550.
    7. Enteria, Napoleon & Mizutani, Kunio, 2011. "The role of the thermally activated desiccant cooling technologies in the issue of energy and environment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(4), pages 2095-2122, May.
    8. Peng, Donggen & Zhang, Xiaosong, 2011. "An analytical model for coupled heat and mass transfer processes in solar collector/regenerator using liquid desiccant," Applied Energy, Elsevier, vol. 88(7), pages 2436-2444, July.
    9. Yin, Yonggao & Qian, Junfei & Zhang, Xiaosong, 2014. "Recent advancements in liquid desiccant dehumidification technology," Renewable and Sustainable Energy Reviews, Elsevier, vol. 31(C), pages 38-52.
    10. Kabeel, A.E., 2010. "Dehumidification and humidification process of desiccant solution by air injection," Energy, Elsevier, vol. 35(12), pages 5192-5201.
    11. Peng, Donggen & Zhang, Xiaosong, 2016. "Experimental investigation on regeneration performance, heat and mass transfer characteristics in a forced solar collector/regenerator," Energy, Elsevier, vol. 101(C), pages 296-308.
    12. Peng, Donggen & Luo, Danting, 2017. "Modeling and parametrical analysis on internally-heated liquid desiccant regenerator in liquid desiccant air conditioning," Energy, Elsevier, vol. 141(C), pages 461-471.
    13. Peng, Donggen & Luo, Danting & Cheng, Xiaosong, 2018. "Modeling and performance comparisons of the grading and single solar collector/ regenerator systems with heat recovery," Energy, Elsevier, vol. 144(C), pages 736-749.
    14. Abdel-Salam, Ahmed H. & Simonson, Carey J., 2016. "State-of-the-art in liquid desiccant air conditioning equipment and systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 1152-1183.
    15. Shukla, D.L. & Modi, K.V., 2022. "Influence of distinct input parameters on performance indices of dehumidifier, regenerator and on liquid desiccant-operated evaporative cooling system – A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    16. She, Xiaohui & Yin, Yonggao & Zhang, Xiaosong, 2015. "Suggested solution concentration for an energy-efficient refrigeration system combined with condensation heat-driven liquid desiccant cycle," Renewable Energy, Elsevier, vol. 83(C), pages 553-564.
    17. Wang, Yingying & Fan, Ying & Wang, Dengjia & Liu, Yanfeng & Qiu, Zhenghao & Liu, Jiaping, 2020. "Optimization of the areas of solar collectors and photovoltaic panels in liquid desiccant air-conditioning systems using solar energy in isolated low-latitude islands," Energy, Elsevier, vol. 198(C).
    18. Peng, Donggen & Zhang, Xiaosong, 2009. "Modeling and performance analysis of solar air pretreatment collector/regenerator using liquid desiccant," Renewable Energy, Elsevier, vol. 34(3), pages 699-705.

    More about this item

    Keywords

    Solar regeneration; Liquid desiccant;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:30:y:2005:i:3:p:327-338. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.