IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v88y2011i5p1494-1499.html
   My bibliography  Save this article

Spark spread - A screening parameter for combined heating and power systems

Author

Listed:
  • Smith, Amanda D.
  • Fumo, Nelson
  • Mago, Pedro J.

Abstract

Combined heating and power (CHP) systems may be considered for installation if they produce savings over conventional systems with separate heating and power. For a CHP system with a natural gas engine as the prime mover, the difference between the price of natural gas and the price of purchased electricity, called spark spread, is an indicator as to whether a CHP system might be considered or not. The objective of this paper is to develop a detailed model, based on the spark spread, that compares the electrical energy and heat energy produced by a CHP system against the same amounts of energy produced by a traditional, or separate heating and power (SHP) system that purchases electricity from the grid. An expression for the spark spread based on the cost of the fuel and some of the CHP system efficiencies is presented in this paper as well as an expression for the payback period for a given capital cost and spark spread. The developed expressions allow determining the required spark spread for a CHP system to produce a net operational savings over the SHP in terms of the performance of system components. Results indicate that the spark spread which might indicate favorable payback varies based on the efficiencies of the CHP system components and the desired payback period. In addition, a new expression for calculating the payback period for a CHP system based on the CHP system capital cost per unit of power output and fuel cost is proposed.

Suggested Citation

  • Smith, Amanda D. & Fumo, Nelson & Mago, Pedro J., 2011. "Spark spread - A screening parameter for combined heating and power systems," Applied Energy, Elsevier, vol. 88(5), pages 1494-1499, May.
  • Handle: RePEc:eee:appene:v:88:y:2011:i:5:p:1494-1499
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306-2619(10)00467-8
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Fumo, Nelson & Mago, Pedro J. & Chamra, Louay M., 2009. "Emission operational strategy for combined cooling, heating, and power systems," Applied Energy, Elsevier, vol. 86(11), pages 2344-2350, November.
    2. Fumo, Nelson & Mago, Pedro J. & Chamra, Louay M., 2009. "Analysis of cooling, heating, and power systems based on site energy consumption," Applied Energy, Elsevier, vol. 86(6), pages 928-932, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Meybodi, Mehdi Aghaei & Behnia, Masud, 2011. "Impact of carbon tax on internal combustion engine size selection in a medium scale CHP system," Applied Energy, Elsevier, vol. 88(12), pages 5153-5163.
    2. Tataraki, Kalliopi G. & Kavvadias, Konstantinos C. & Maroulis, Zacharias B., 2018. "A systematic approach to evaluate the economic viability of Combined Cooling Heating and Power systems over conventional technologies," Energy, Elsevier, vol. 148(C), pages 283-295.
    3. Tilocca, Giuseppe & Sánchez, David & Torres-García, Miguel, 2024. "Applying the root cause analysis methodology to study the lack of market success of micro gas turbine systems," Applied Energy, Elsevier, vol. 360(C).
    4. Antonio Piacentino & Roberto Gallea & Pietro Catrini & Fabio Cardona & Domenico Panno, 2016. "On the Reliability of Optimization Results for Trigeneration Systems in Buildings, in the Presence of Price Uncertainties and Erroneous Load Estimation," Energies, MDPI, vol. 9(12), pages 1-31, December.
    5. Knizley, Alta A. & Mago, Pedro J. & Smith, Amanda D., 2014. "Evaluation of the performance of combined cooling, heating, and power systems with dual power generation units," Energy Policy, Elsevier, vol. 66(C), pages 654-665.
    6. Tilocca, Giuseppe & Sánchez, David & Torres-García, Miguel, 2023. "Application of the theory of constraints to unveil the root causes of the limited market penetration of micro gas turbine systems," Energy, Elsevier, vol. 278(C).
    7. Aikaterini Papadimitriou & Vassilios Vassiliou & Kalliopi Tataraki & Eugenia Giannini & Zacharias Maroulis, 2020. "Economic Assessment of Cogeneration Systems in Operation," Energies, MDPI, vol. 13(9), pages 1-15, May.
    8. Onishi, Viviani C. & Antunes, Carlos H. & Fraga, Eric S. & Cabezas, Heriberto, 2019. "Stochastic optimization of trigeneration systems for decision-making under long-term uncertainty in energy demands and prices," Energy, Elsevier, vol. 175(C), pages 781-797.
    9. Smith, Amanda D. & Mago, Pedro J. & Fumo, Nelson, 2011. "Emissions spark spread and primary energy spark spread – Environmental and energy screening parameters for combined heating and power systems," Applied Energy, Elsevier, vol. 88(11), pages 3891-3897.
    10. Elias, R.S. & Wahab, M.I.M. & Fang, L., 2016. "The spark spread and clean spark spread option based valuation of a power plant with multiple turbines," Energy Economics, Elsevier, vol. 59(C), pages 314-327.
    11. Kavvadias, K.C., 2016. "Energy price spread as a driving force for combined generation investments: A view on Europe," Energy, Elsevier, vol. 115(P3), pages 1632-1639.
    12. Smith, Amanda D. & Mago, Pedro J., 2014. "Effects of load-following operational methods on combined heat and power system efficiency," Applied Energy, Elsevier, vol. 115(C), pages 337-351.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kang, Ligai & Yang, Junhong & An, Qingsong & Deng, Shuai & Zhao, Jun & Wang, Hui & Li, Zelin, 2017. "Effects of load following operational strategy on CCHP system with an auxiliary ground source heat pump considering carbon tax and electricity feed in tariff," Applied Energy, Elsevier, vol. 194(C), pages 454-466.
    2. Jiang-Jiang, Wang & Chun-Fa, Zhang & You-Yin, Jing, 2010. "Multi-criteria analysis of combined cooling, heating and power systems in different climate zones in China," Applied Energy, Elsevier, vol. 87(4), pages 1247-1259, April.
    3. Fumo, Nelson & Chamra, Louay M., 2010. "Analysis of combined cooling, heating, and power systems based on source primary energy consumption," Applied Energy, Elsevier, vol. 87(6), pages 2023-2030, June.
    4. Liu, Mingxi & Shi, Yang & Fang, Fang, 2012. "A new operation strategy for CCHP systems with hybrid chillers," Applied Energy, Elsevier, vol. 95(C), pages 164-173.
    5. Smith, Amanda D. & Mago, Pedro J. & Fumo, Nelson, 2011. "Emissions spark spread and primary energy spark spread – Environmental and energy screening parameters for combined heating and power systems," Applied Energy, Elsevier, vol. 88(11), pages 3891-3897.
    6. Miao Li & Hailin Mu & Huanan Li, 2013. "Analysis and Assessments of Combined Cooling, Heating and Power Systems in Various Operation Modes for a Building in China, Dalian," Energies, MDPI, vol. 6(5), pages 1-22, May.
    7. Wang, Jiang-Jiang & Jing, You-Yin & Zhang, Chun-Fa & Zhai, Zhiqiang (John), 2011. "Performance comparison of combined cooling heating and power system in different operation modes," Applied Energy, Elsevier, vol. 88(12), pages 4621-4631.
    8. Li, Miao & Mu, Hailin & Li, Nan & Ma, Baoyu, 2016. "Optimal design and operation strategy for integrated evaluation of CCHP (combined cooling heating and power) system," Energy, Elsevier, vol. 99(C), pages 202-220.
    9. Cho, Heejin & Smith, Amanda D. & Mago, Pedro, 2014. "Combined cooling, heating and power: A review of performance improvement and optimization," Applied Energy, Elsevier, vol. 136(C), pages 168-185.
    10. Wang, Jiangjiang & Zhai, Zhiqiang (John) & Jing, Youyin & Zhang, Chunfa, 2010. "Optimization design of BCHP system to maximize to save energy and reduce environmental impact," Energy, Elsevier, vol. 35(8), pages 3388-3398.
    11. Chen, Jun & Garcia, Humberto E., 2016. "Economic optimization of operations for hybrid energy systems under variable markets," Applied Energy, Elsevier, vol. 177(C), pages 11-24.
    12. Rismanchi, B., 2017. "District energy network (DEN), current global status and future development," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 571-579.
    13. Zhang, Na & Wang, Zefeng & Lior, Noam & Han, Wei, 2018. "Advancement of distributed energy methods by a novel high efficiency solar-assisted combined cooling, heating and power system," Applied Energy, Elsevier, vol. 219(C), pages 179-186.
    14. Li, Yajun & Xia, Yan, 2013. "DES/CCHP: The best utilization mode of natural gas for China’s low carbon economy," Energy Policy, Elsevier, vol. 53(C), pages 477-483.
    15. Wang, Lu & Gu, Wei & Wu, Zhi & Qiu, Haifeng & Pan, Guangsheng, 2020. "Non-cooperative game-based multilateral contract transactions in power-heating integrated systems," Applied Energy, Elsevier, vol. 268(C).
    16. Chen, Jun & Rabiti, Cristian, 2017. "Synthetic wind speed scenarios generation for probabilistic analysis of hybrid energy systems," Energy, Elsevier, vol. 120(C), pages 507-517.
    17. Naraharisetti, Pavan Kumar & Karimi, I.A. & Anand, Abhay & Lee, Dong-Yup, 2011. "A linear diversity constraint – Application to scheduling in microgrids," Energy, Elsevier, vol. 36(7), pages 4235-4243.
    18. Yun, Kyung Tae & Cho, Heejin & Luck, Rogelio & Mago, Pedro J., 2013. "Modeling of reciprocating internal combustion engines for power generation and heat recovery," Applied Energy, Elsevier, vol. 102(C), pages 327-335.
    19. Maghanki, Maryam Mohammadi & Ghobadian, Barat & Najafi, Gholamhassan & Galogah, Reza Janzadeh, 2013. "Micro combined heat and power (MCHP) technologies and applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 28(C), pages 510-524.
    20. Dincer, Ibrahim & Acar, Canan, 2017. "Smart energy systems for a sustainable future," Applied Energy, Elsevier, vol. 194(C), pages 225-235.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:88:y:2011:i:5:p:1494-1499. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.