IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v88y2011i3p814-824.html
   My bibliography  Save this article

Backstepping-based nonlinear adaptive control for coal-fired utility boiler-turbine units

Author

Listed:
  • Fang, Fang
  • Wei, Le

Abstract

The control system of boiler-turbine unit plays an important role in improving efficiency and reducing emissions of power generation unit. The nonlinear, coupling and uncertainty of the unit caused by varying working conditions should be fully considered during the control system design. This paper presents an efficient control scheme based on backstepping theory for improving load adaptability of boiler-turbines in wide operation range. The design process of the scheme includes model preprocessing, control Lyapunov functions selection, interlaced computation of adaptive control laws, etc. For simplification and accuracy, differential of steam pipe inlet pressure and integral terms of target errors are adopted. Also, to enhance practicality, implementation steps of the scheme are proposed. A practical nonlinear model of a 500Â MW coal-fired boiler-turbine unit is used to test the efficiency of the proposed scheme in different conditions.

Suggested Citation

  • Fang, Fang & Wei, Le, 2011. "Backstepping-based nonlinear adaptive control for coal-fired utility boiler-turbine units," Applied Energy, Elsevier, vol. 88(3), pages 814-824, March.
  • Handle: RePEc:eee:appene:v:88:y:2011:i:3:p:814-824
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306-2619(10)00365-X
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Huang, Bin & Xu, Shisen & Gao, Shiwang & Liu, Lianbo & Tao, Jiye & Niu, Hongwei & Cai, Ming & Cheng, Jian, 2010. "Industrial test and techno-economic analysis of CO2 capture in Huaneng Beijing coal-fired power station," Applied Energy, Elsevier, vol. 87(11), pages 3347-3354, November.
    2. Zhou, Wenji & Zhu, Bing & Fuss, Sabine & Szolgayová, Jana & Obersteiner, Michael & Fei, Weiyang, 2010. "Uncertainty modeling of CCS investment strategy in China's power sector," Applied Energy, Elsevier, vol. 87(7), pages 2392-2400, July.
    3. Hu, Zhiyuan & Tan, Piqiang & Pu, Gengqiang, 2006. "Multi-objective optimization of cassava-based fuel ethanol used as an alternative automotive fuel in Guangxi, China," Applied Energy, Elsevier, vol. 83(8), pages 819-840, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Napole, Cristian & Derbeli, Mohamed & Barambones, Oscar, 2021. "A global integral terminal sliding mode control based on a novel reaching law for a proton exchange membrane fuel cell system," Applied Energy, Elsevier, vol. 301(C).
    2. Hong, Feng & Ji, Weiming & Pang, Yalei & Hao, Junhong & Du, Ming & Fang, Fang & Liu, Jizhen, 2023. "A new energy state-based modeling and performance assessment method for primary frequency control of thermal power plants," Energy, Elsevier, vol. 276(C).
    3. Shi, Yan & Zhong, Wenqi & Chen, Xi & Yu, A.B. & Li, Jie, 2019. "Combustion optimization of ultra supercritical boiler based on artificial intelligence," Energy, Elsevier, vol. 170(C), pages 804-817.
    4. Ghabraei, Soheil & Moradi, Hamed & Vossoughi, Gholamreza, 2018. "Design & application of adaptive variable structure &H∞ robust optimal schemes in nonlinear control of boiler-turbine unit in the presence of various uncertainties," Energy, Elsevier, vol. 142(C), pages 1040-1056.
    5. Zhang, Jianhua & Zhou, Yeli & Li, Ying & Hou, Guolian & Fang, Fang, 2013. "Generalized predictive control applied in waste heat recovery power plants," Applied Energy, Elsevier, vol. 102(C), pages 320-326.
    6. Sun, Li & Hua, Qingsong & Shen, Jiong & Xue, Yali & Li, Donghai & Lee, Kwang Y., 2017. "Multi-objective optimization for advanced superheater steam temperature control in a 300MW power plant," Applied Energy, Elsevier, vol. 208(C), pages 592-606.
    7. Gang Zhao & Yuge Sun & Zhi-Gang Su & Yongsheng Hao, 2023. "Receding Galerkin Optimal Control with High-Order Sliding Mode Disturbance Observer for a Boiler-Turbine Unit," Sustainability, MDPI, vol. 15(13), pages 1-19, June.
    8. Yong-Sheng Hao & Zhuo Chen & Li Sun & Junyu Liang & Hongxia Zhu, 2020. "Multi-Objective Intelligent Optimization of Superheated Steam Temperature Control Based on Cascaded Disturbance Observer," Sustainability, MDPI, vol. 12(19), pages 1-24, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Minkai & Guo, Yincheng, 2013. "Rate based modeling of absorption and regeneration for CO2 capture by aqueous ammonia solution," Applied Energy, Elsevier, vol. 111(C), pages 142-152.
    2. Rochedo, Pedro R.R. & Szklo, Alexandre, 2013. "Designing learning curves for carbon capture based on chemical absorption according to the minimum work of separation," Applied Energy, Elsevier, vol. 108(C), pages 383-391.
    3. Li, Xue & Zhang, Rufeng & Bai, Linquan & Li, Guoqing & Jiang, Tao & Chen, Houhe, 2018. "Stochastic low-carbon scheduling with carbon capture power plants and coupon-based demand response," Applied Energy, Elsevier, vol. 210(C), pages 1219-1228.
    4. Jiang, Xi, 2011. "A review of physical modelling and numerical simulation of long-term geological storage of CO2," Applied Energy, Elsevier, vol. 88(11), pages 3557-3566.
    5. Elsir, Mohamed & Al-Sumaiti, Ameena Saad & El Moursi, Mohamed Shawky, 2024. "Towards energy transition: A novel day-ahead operation scheduling strategy for demand response and hybrid energy storage systems in smart grid," Energy, Elsevier, vol. 293(C).
    6. Zhu, Lei & Fan, Ying, 2011. "A real options–based CCS investment evaluation model: Case study of China’s power generation sector," Applied Energy, Elsevier, vol. 88(12), pages 4320-4333.
    7. Mo, Jian-Lei & Schleich, Joachim & Zhu, Lei & Fan, Ying, 2015. "Delaying the introduction of emissions trading systems—Implications for power plant investment and operation from a multi-stage decision model," Energy Economics, Elsevier, vol. 52(PB), pages 255-264.
    8. Qin, Changlei & Yin, Junjun & Feng, Bo & Ran, Jingyu & Zhang, Li & Manovic, Vasilije, 2016. "Modelling of the calcination behaviour of a uniformly-distributed CuO/CaCO3 particle in Ca–Cu chemical looping," Applied Energy, Elsevier, vol. 164(C), pages 400-410.
    9. Wang, Fu & Zhao, Jun & Zhang, Houcheng & Miao, He & Zhao, Jiapei & Wang, Jiatang & Yuan, Jinliang & Yan, Jinyue, 2018. "Efficiency evaluation of a coal-fired power plant integrated with chilled ammonia process using an absorption refrigerator," Applied Energy, Elsevier, vol. 230(C), pages 267-276.
    10. Linnerud, Kristin & Andersson, Ane Marte & Fleten, Stein-Erik, 2014. "Investment timing under uncertain renewable energy policy: An empirical study of small hydropower projects," Energy, Elsevier, vol. 78(C), pages 154-164.
    11. Mo, Jian-Lei & Agnolucci, Paolo & Jiang, Mao-Rong & Fan, Ying, 2016. "The impact of Chinese carbon emission trading scheme (ETS) on low carbon energy (LCE) investment," Energy Policy, Elsevier, vol. 89(C), pages 271-283.
    12. Zhang, Xinhua & Yang, Hongming & Yu, Qian & Qiu, Jing & Zhang, Yongxi, 2018. "Analysis of carbon-abatement investment for thermal power market in carbon-dispatching mode and policy recommendations," Energy, Elsevier, vol. 149(C), pages 954-966.
    13. Jansson, Christer & Westerbergh, Anna & Zhang, Jiaming & Hu, Xinwen & Sun, Chuanxin, 2009. "Cassava, a potential biofuel crop in (the) People's Republic of China," Applied Energy, Elsevier, vol. 86(Supplemen), pages 95-99, November.
    14. Zhang, M.M. & Wang, Qunwei & Zhou, Dequn & Ding, H., 2019. "Evaluating uncertain investment decisions in low-carbon transition toward renewable energy," Applied Energy, Elsevier, vol. 240(C), pages 1049-1060.
    15. Nasvi, M.C.M. & Ranjith, P.G. & Sanjayan, J., 2014. "Effect of different mix compositions on apparent carbon dioxide (CO2) permeability of geopolymer: Suitability as well cement for CO2 sequestration wells," Applied Energy, Elsevier, vol. 114(C), pages 939-948.
    16. Zhang, Dongjie & Liu, Pei & Ma, Linwei & LI, Zheng, 2013. "A multi-period optimization model for planning of China's power sector with consideration of carbon dioxide mitigation—The importance of continuous and stable carbon mitigation policy," Energy Policy, Elsevier, vol. 58(C), pages 319-328.
    17. Cheng, Rui & Xu, Zhaofeng & Liu, Pei & Wang, Zhe & Li, Zheng & Jones, Ian, 2015. "A multi-region optimization planning model for China’s power sector," Applied Energy, Elsevier, vol. 137(C), pages 413-426.
    18. Mikulčić, Hrvoje & Vujanović, Milan & Duić, Neven, 2013. "Reducing the CO2 emissions in Croatian cement industry," Applied Energy, Elsevier, vol. 101(C), pages 41-48.
    19. Zhang, M.M. & Zhou, D.Q. & Zhou, P. & Chen, H.T., 2017. "Optimal design of subsidy to stimulate renewable energy investments: The case of China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 71(C), pages 873-883.
    20. Hoffmann, Bettina Susanne & Szklo, Alexandre, 2011. "Integrated gasification combined cycle and carbon capture: A risky option to mitigate CO2 emissions of coal-fired power plants," Applied Energy, Elsevier, vol. 88(11), pages 3917-3929.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:88:y:2011:i:3:p:814-824. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.