IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v88y2011i1p41-51.html
   My bibliography  Save this article

Comparison of two different flow types on CO removal along a two-stage hydrogen permselective membrane reactor for methanol synthesis

Author

Listed:
  • Rahimpour, M.R.
  • Mazinani, S.
  • Vaferi, B.
  • Baktash, M.S.

Abstract

Carbon monoxide (CO) is a gaseous pollutant with adverse effects on human health and the environment. Industrial chemical processes contribute significantly to CO accumulation in the atmosphere. One of the most important processes for controlling carbon monoxide emissions is the conversion of CO to methanol by catalytic hydrogenation. In this study, the effects of two different flow types on the rate of CO removal along a two-stage hydrogen permselective membrane reactor have been investigated. In the first configuration, fresh synthesis gas flows in the tube side of the membrane reactor co-currently with reacting material in the shell side, so that more hydrogen is provided in the first sections of the reactor. In the second configuration, fresh synthesis gas flows in the tube side of the membrane reactor counter-currently with reacting material in the shell side, so that more hydrogen is provided in the last sections of the reactor. For this membrane system, a one-dimensional dynamic plug flow model in the presence of catalyst deactivation was developed. Comparison between co-current and counter-current configurations shows that the reactor operates with higher conversion of CO and hydrogen permeation rate in the counter-current mode whereas; longer catalyst life is achieved in the co-current configuration. Enhancement of CO removal in the counter-current mode versus the co-current configuration results in an ultimate reduction in CO emissions into the atmosphere.

Suggested Citation

  • Rahimpour, M.R. & Mazinani, S. & Vaferi, B. & Baktash, M.S., 2011. "Comparison of two different flow types on CO removal along a two-stage hydrogen permselective membrane reactor for methanol synthesis," Applied Energy, Elsevier, vol. 88(1), pages 41-51, January.
  • Handle: RePEc:eee:appene:v:88:y:2011:i:1:p:41-51
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306-2619(10)00129-7
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Chmielniak, Tomasz & Sciazko, Marek, 2003. "Co-gasification of biomass and coal for methanol synthesis," Applied Energy, Elsevier, vol. 74(3-4), pages 393-403, March.
    2. Prater, Daniel N. & Rusek, John J., 2003. "Energy density of a methanol/hydrogen-peroxide fuel cell," Applied Energy, Elsevier, vol. 74(1-2), pages 135-140, January.
    3. Kiso, Fumihiko & Arashi, Norio, 1998. "Hybrid Methanol-Production Process," Applied Energy, Elsevier, vol. 59(2-3), pages 215-228, February.
    4. Leduc, S. & Lundgren, J. & Franklin, O. & Dotzauer, E., 2010. "Location of a biomass based methanol production plant: A dynamic problem in northern Sweden," Applied Energy, Elsevier, vol. 87(1), pages 68-75, January.
    5. Badr, O. & Probert, S. D., 1994. "Carbon---monoxide concentration in the Earth's atmosphere," Applied Energy, Elsevier, vol. 49(2), pages 99-143.
    6. Chen, Wei-Hsin & Chiu, I-Han, 2010. "Modeling of transient hydrogen permeation process across a palladium membrane," Applied Energy, Elsevier, vol. 87(3), pages 1023-1032, March.
    7. Badr, O. & Probert, S. D., 1995. "Sinks and environmental impacts for atmospheric carbon monoxide," Applied Energy, Elsevier, vol. 50(4), pages 339-372.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Rahimpour, Mohammad Reza & Jafari, Mitra & Iranshahi, Davood, 2013. "Progress in catalytic naphtha reforming process: A review," Applied Energy, Elsevier, vol. 109(C), pages 79-93.
    2. Ribeirinha, P. & Abdollahzadeh, M. & Boaventura, M. & Mendes, A., 2017. "H2 production with low carbon content via MSR in packed bed membrane reactors for high-temperature polymeric electrolyte membrane fuel cell," Applied Energy, Elsevier, vol. 188(C), pages 409-419.
    3. Arab Aboosadi, Z. & Jahanmiri, A.H. & Rahimpour, M.R., 2011. "Optimization of tri-reformer reactor to produce synthesis gas for methanol production using differential evolution (DE) method," Applied Energy, Elsevier, vol. 88(8), pages 2691-2701, August.
    4. Chen, Wei-Hsin & Hsia, Ming-Hsien & Chi, Yen-Hsun & Lin, Yu-Li & Yang, Chang-Chung, 2014. "Polarization phenomena of hydrogen-rich gas in high-permeance Pd and Pd–Cu membrane tubes," Applied Energy, Elsevier, vol. 113(C), pages 41-50.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Hanfei & Wang, Ligang & Pérez-Fortes, Mar & Van herle, Jan & Maréchal, François & Desideri, Umberto, 2020. "Techno-economic optimization of biomass-to-methanol with solid-oxide electrolyzer," Applied Energy, Elsevier, vol. 258(C).
    2. Huopana, Tuomas & Song, Han & Kolehmainen, Mikko & Niska, Harri, 2013. "A regional model for sustainable biogas electricity production: A case study from a Finnish province," Applied Energy, Elsevier, vol. 102(C), pages 676-686.
    3. Basile, Flavia & Pilotti, Lorenzo & Ugolini, Marco & Lozza, Giovanni & Manzolini, Giampaolo, 2022. "Supply chain optimization and GHG emissions in biofuel production from forestry residues in Sweden," Renewable Energy, Elsevier, vol. 196(C), pages 405-421.
    4. Patrizio, P. & Leduc, S. & Chinese, D. & Kraxner, F., 2017. "Internalizing the external costs of biogas supply chains in the Italian energy sector," Energy, Elsevier, vol. 125(C), pages 85-96.
    5. Zhang, Ziyin & Pang, Shusheng & Levi, Tana, 2017. "Influence of AAEM species in coal and biomass on steam co-gasification of chars of blended coal and biomass," Renewable Energy, Elsevier, vol. 101(C), pages 356-363.
    6. Mobini, Mahdi & Sowlati, Taraneh & Sokhansanj, Shahab, 2011. "Forest biomass supply logistics for a power plant using the discrete-event simulation approach," Applied Energy, Elsevier, vol. 88(4), pages 1241-1250, April.
    7. Chen, Wei-Hsin & Chen, Chih-Jung & Hung, Chen-I & Shen, Cheng-Hsien & Hsu, Heng-Wen, 2013. "A comparison of gasification phenomena among raw biomass, torrefied biomass and coal in an entrained-flow reactor," Applied Energy, Elsevier, vol. 112(C), pages 421-430.
    8. Mehmood, Asad & Ha, Heung Yong, 2014. "Performance restoration of direct methanol fuel cells in long-term operation using a hydrogen evolution method," Applied Energy, Elsevier, vol. 114(C), pages 164-171.
    9. Su, Li-Wang & Li, Xiang-Rong & Sun, Zuo-Yu, 2013. "Flow chart of methanol in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 28(C), pages 541-550.
    10. Truong, Nguyen Le & Gustavsson, Leif, 2013. "Integrated biomass-based production of district heat, electricity, motor fuels and pellets of different scales," Applied Energy, Elsevier, vol. 104(C), pages 623-632.
    11. Holmgren, Kristina M. & Berntsson, Thore S. & Andersson, Eva & Rydberg, Tomas, 2015. "The influence of biomass supply chains and by-products on the greenhouse gas emissions from gasification-based bio-SNG production systems," Energy, Elsevier, vol. 90(P1), pages 148-162.
    12. Daianova, L. & Dotzauer, E. & Thorin, E. & Yan, J., 2012. "Evaluation of a regional bioenergy system with local production of biofuel for transportation, integrated with a CHP plant," Applied Energy, Elsevier, vol. 92(C), pages 739-749.
    13. Mancini, Enrico & Tian, Hailin & Angelidaki, Irini & Fotidis, Ioannis A., 2021. "The implications of using organic-rich industrial wastewater as biomethanation feedstocks," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).
    14. Zhang, Jun & Osmani, Atif & Awudu, Iddrisu & Gonela, Vinay, 2013. "An integrated optimization model for switchgrass-based bioethanol supply chain," Applied Energy, Elsevier, vol. 102(C), pages 1205-1217.
    15. Kiso, F. & Matsuo, M., 2011. "A simulation study on the enhancement of the shift reaction by water injection into a gasifier," Energy, Elsevier, vol. 36(7), pages 4032-4040.
    16. Salkuyeh, Yaser Khojasteh & Elkamel, Ali & Thé, Jesse & Fowler, Michael, 2016. "Development and techno-economic analysis of an integrated petroleum coke, biomass, and natural gas polygeneration process," Energy, Elsevier, vol. 113(C), pages 861-874.
    17. Gong, Changming & Li, Dong & Liu, Jiajun & Liu, Fenghua, 2024. "Computational study of excess air ratio impacts on performances of a spark-ignition H2/methanol dual-injection engine," Energy, Elsevier, vol. 289(C).
    18. Mohd Idris, Muhammad Nurariffudin & Hashim, Haslenda & Leduc, Sylvain & Yowargana, Ping & Kraxner, Florian & Woon, Kok Sin, 2021. "Deploying bioenergy for decarbonizing Malaysian energy sectors and alleviating renewable energy poverty," Energy, Elsevier, vol. 232(C).
    19. Osmani, Atif & Zhang, Jun, 2014. "Economic and environmental optimization of a large scale sustainable dual feedstock lignocellulosic-based bioethanol supply chain in a stochastic environment," Applied Energy, Elsevier, vol. 114(C), pages 572-587.
    20. Kolb, Sebastian & Plankenbühler, Thomas & Hofmann, Katharina & Bergerson, Joule & Karl, Jürgen, 2021. "Life cycle greenhouse gas emissions of renewable gas technologies: A comparative review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 146(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:88:y:2011:i:1:p:41-51. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.