IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v87y2010i11p3494-3506.html
   My bibliography  Save this article

Energy management and design of centralized air-conditioning systems through the non-revisiting strategy for heuristic optimization methods

Author

Listed:
  • Fong, K.F.
  • Yuen, S.Y.
  • Chow, C.K.
  • Leung, S.W.

Abstract

It is getting more and more popular to apply heuristic optimization methods, like genetic algorithm (GA) and particle swarm optimization (PSO), to handle various engineering optimization problems. In this paper, optimization problems of typical centralized air-conditioning systems were solved by the non-revisiting (Nr) strategy, which was proposed to be incorporated into the common heuristic methods for improving the optimization effectiveness and reliability. This approach can store the evaluated fitness values in an archive with minimal computer memory, detect the revisits and prevent them from re-evaluating. It is particularly useful for the problems formulated by dynamic simulation or detailed modeling with very demanding computational time for function evaluation. The non-revisiting strategy can facilitate the search of the global optimum by its parameter-less adaptive mutation capability. In the optimization problems of central air-conditioning systems, it was found that the NrGA and NrPSO could search better solutions at a limited number of function evaluations than the conventional GA and PSO did. The ultimate goal is to determine the required parameters for optimal design and energy management. The proposed strategy can be applied to similar types of air-conditioning or engineering optimization problems, and possibly incorporated into other kinds of heuristic optimization methods.

Suggested Citation

  • Fong, K.F. & Yuen, S.Y. & Chow, C.K. & Leung, S.W., 2010. "Energy management and design of centralized air-conditioning systems through the non-revisiting strategy for heuristic optimization methods," Applied Energy, Elsevier, vol. 87(11), pages 3494-3506, November.
  • Handle: RePEc:eee:appene:v:87:y:2010:i:11:p:3494-3506
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306-2619(10)00156-X
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Cher Ming Tan (ed.), 2008. "Simulated Annealing," Books, IntechOpen, number 37, January-J.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ikeda, Shintaro & Ooka, Ryozo, 2015. "Metaheuristic optimization methods for a comprehensive operating schedule of battery, thermal energy storage, and heat source in a building energy system," Applied Energy, Elsevier, vol. 151(C), pages 192-205.
    2. Yu, F.W. & Chan, K.T., 2012. "Improved energy management of chiller systems by multivariate and data envelopment analyses," Applied Energy, Elsevier, vol. 92(C), pages 168-174.
    3. Siddhartha, & Sharma, Naveen & Varun,, 2012. "A particle swarm optimization algorithm for optimization of thermal performance of a smooth flat plate solar air heater," Energy, Elsevier, vol. 38(1), pages 406-413.
    4. Sun, Alexander Y., 2020. "Optimal carbon storage reservoir management through deep reinforcement learning," Applied Energy, Elsevier, vol. 278(C).
    5. Li, Ning & Xia, Liang & Shiming, Deng & Xu, Xiangguo & Chan, Ming-Yin, 2012. "Dynamic modeling and control of a direct expansion air conditioning system using artificial neural network," Applied Energy, Elsevier, vol. 91(1), pages 290-300.
    6. Taslimi-Renani, Ehsan & Modiri-Delshad, Mostafa & Elias, Mohamad Fathi Mohamad & Rahim, Nasrudin Abd., 2016. "Development of an enhanced parametric model for wind turbine power curve," Applied Energy, Elsevier, vol. 177(C), pages 544-552.
    7. Ma, Zhenjun & Wang, Shengwei, 2011. "Supervisory and optimal control of central chiller plants using simplified adaptive models and genetic algorithm," Applied Energy, Elsevier, vol. 88(1), pages 198-211, January.
    8. Lee, Dasheng & Cheng, Chin-Chi, 2016. "Energy savings by energy management systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 760-777.
    9. Loganthurai, P. & Rajasekaran, V. & Gnanambal, K., 2016. "Evolutionary algorithm based optimum scheduling of processing units in rice industry to reduce peak demand," Energy, Elsevier, vol. 107(C), pages 419-430.
    10. Chen, Qun & Fu, Rong-Huan & Xu, Yun-Chao, 2015. "Electrical circuit analogy for heat transfer analysis and optimization in heat exchanger networks," Applied Energy, Elsevier, vol. 139(C), pages 81-92.
    11. Chen, Qun & Wang, Yi-Fei & Xu, Yun-Chao, 2015. "A thermal resistance-based method for the optimal design of central variable water/air volume chiller systems," Applied Energy, Elsevier, vol. 139(C), pages 119-130.
    12. Xia, Lei & Ma, Zhenjun & Kokogiannakis, Georgios & Wang, Shugang & Gong, Xuemei, 2018. "A model-based optimal control strategy for ground source heat pump systems with integrated solar photovoltaic thermal collectors," Applied Energy, Elsevier, vol. 228(C), pages 1399-1412.
    13. Abou-Ziyan, Hosny Z. & Alajmi, Ali F., 2014. "Effect of load-sharing operation strategy on the aggregate performance of existed multiple-chiller systems," Applied Energy, Elsevier, vol. 135(C), pages 329-338.
    14. Fong, K.F. & Lee, C.K. & Chow, C.K. & Yuen, S.Y., 2011. "Simulation–optimization of solar–thermal refrigeration systems for office use in subtropical Hong Kong," Energy, Elsevier, vol. 36(11), pages 6298-6307.
    15. Sharma, Naveen & Varun, & Siddhartha,, 2012. "Stochastic techniques used for optimization in solar systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(3), pages 1399-1411.
    16. Gao, Dian-ce & Wang, Shengwei & Sun, Yongjun & Xiao, Fu, 2012. "Diagnosis of the low temperature difference syndrome in the chilled water system of a super high-rise building: A case study," Applied Energy, Elsevier, vol. 98(C), pages 597-606.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yen-Chen Huang & Chao-Chin Lin & Hund-Der Yeh, 2015. "An Optimization Approach to Leak Detection in Pipe Networks Using Simulated Annealing," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(11), pages 4185-4201, September.
    2. Shengnan Wang & Chunguang Li, 2018. "Distributed Stochastic Algorithm for Global Optimization in Networked System," Journal of Optimization Theory and Applications, Springer, vol. 179(3), pages 1001-1007, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:87:y:2010:i:11:p:3494-3506. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.