IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v87y2010i8p2764-2767.html
   My bibliography  Save this article

Experimental studies on hemi cylindrical walk-in type solar tunnel dryer for grape drying

Author

Listed:
  • Rathore, N.S.
  • Panwar, N.L.

Abstract

A walk-in type hemi cylindrical solar tunnel dryer has been built with heat protective north wall at College of Dairy and Food Science Technology, Udaipur, India for drying agricultural & horticulture product on large scale. In this paper attempt has been made to evaluate the performance of developed dryer to dry the seedless grapes (mutant: Sonaka). The study show that chemically untreated grapes took seven days to dry at 16% (wb) moisture content. The temperature gradient inside the tunnel dryer is about 10-28 °C during the clear day, which is quite sufficient to dry agricultural commodities.

Suggested Citation

  • Rathore, N.S. & Panwar, N.L., 2010. "Experimental studies on hemi cylindrical walk-in type solar tunnel dryer for grape drying," Applied Energy, Elsevier, vol. 87(8), pages 2764-2767, August.
  • Handle: RePEc:eee:appene:v:87:y:2010:i:8:p:2764-2767
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306-2619(10)00078-4
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ekechukwu, O.V. & Norton, B., 1997. "Design and measured performance of a solar chimney for natural-circulation solar-energy dryers," Renewable Energy, Elsevier, vol. 10(1), pages 81-90.
    2. Ng, Ah Bing & Deng, Shiming, 2008. "A new termination control method for a clothes drying process in a clothes dryer," Applied Energy, Elsevier, vol. 85(9), pages 818-829, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Saidur, R. & Hossain, M.S. & Islam, M.R. & Fayaz, H. & Mohammed, H.A., 2011. "A review on kiln system modeling," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(5), pages 2487-2500, June.
    2. Liu, Shuli & Li, Yongcai, 2015. "An experimental study on the thermal performance of a solar chimney without and with PCM," Renewable Energy, Elsevier, vol. 81(C), pages 338-346.
    3. Stawreberg, Lena & Nilsson, Lars, 2013. "Potential energy savings made by using a specific control strategy when tumble drying small loads," Applied Energy, Elsevier, vol. 102(C), pages 484-491.
    4. Defraeye, Thijs, 2014. "Advanced computational modelling for drying processes – A review," Applied Energy, Elsevier, vol. 131(C), pages 323-344.
    5. Pedro Cerezal-Mezquita & Waldo Bugueño-Muñoz, 2022. "Drying of Carrot Strips in Indirect Solar Dehydrator with Photovoltaic Cell and Thermal Energy Storage," Sustainability, MDPI, vol. 14(4), pages 1-18, February.
    6. Sangamithra, A. & Swamy, Gabriela John & Prema, R. Sorna & Priyavarshini, R. & Chandrasekar, V. & Sasikala, S., 2014. "An overview of a polyhouse dryer," Renewable and Sustainable Energy Reviews, Elsevier, vol. 40(C), pages 902-910.
    7. Kasayapanand, Nat, 2008. "Enhanced heat transfer in inclined solar chimneys by electrohydrodynamic technique," Renewable Energy, Elsevier, vol. 33(3), pages 444-453.
    8. Chen, Wei & Qu, Man, 2014. "Analysis of the heat transfer and airflow in solar chimney drying system with porous absorber," Renewable Energy, Elsevier, vol. 63(C), pages 511-518.
    9. Patel, Viral K. & Gluesenkamp, Kyle R. & Goodman, Dakota & Gehl, Anthony, 2018. "Experimental evaluation and thermodynamic system modeling of thermoelectric heat pump clothes dryer," Applied Energy, Elsevier, vol. 217(C), pages 221-232.
    10. Afriyie, J.K. & Nazha, M.A.A. & Rajakaruna, H. & Forson, F.K., 2009. "Experimental investigations of a chimney-dependent solar crop dryer," Renewable Energy, Elsevier, vol. 34(1), pages 217-222.
    11. El Fil, Bachir & Garimella, Srinivas, 2022. "Energy-efficient gas-fired tumble dryer with adsorption thermal storage," Energy, Elsevier, vol. 239(PA).
    12. Ogonowski, Zbigniew, 2011. "Drying control system for spray booth with optimization of fuel consumption," Applied Energy, Elsevier, vol. 88(5), pages 1586-1595, May.
    13. Fudholi, A. & Sopian, K. & Ruslan, M.H. & Alghoul, M.A. & Sulaiman, M.Y., 2010. "Review of solar dryers for agricultural and marine products," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(1), pages 1-30, January.
    14. Dupuis, Eric D. & Momen, Ayyoub M. & Patel, Viral K. & Shahab, Shima, 2019. "Electroelastic investigation of drying rate in the direct contact ultrasonic fabric dewatering process," Applied Energy, Elsevier, vol. 235(C), pages 451-462.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:87:y:2010:i:8:p:2764-2767. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.