IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v86y2009i9p1712-1722.html
   My bibliography  Save this article

Design of environmentally conscious absorption cooling systems via multi-objective optimization and life cycle assessment

Author

Listed:
  • Gebreslassie, Berhane H.
  • Guillén-Gosálbez, Gonzalo
  • Jiménez, Laureano
  • Boer, Dieter

Abstract

In this paper, a systematic method based on mathematical programming is proposed for the design of environmentally conscious absorption cooling systems. The approach presented relies on the development of a multi-objective formulation that simultaneously accounts for the minimization of cost and environmental impact at the design stage. The latter criterion is measured by the Eco-indicator 99 methodology, which follows the principles of life cycle assessment (LCA). The design task is formulated as a bi-criteria nonlinear programming (NLP) problem, the solution of which is defined by a set of Pareto points that represent the optimal trade-off between the economic and environmental concerns considered in the analysis. These Pareto solutions can be obtained via standard techniques for multi-objective optimization. The main advantage of this approach is that it offers a set of alternative options for system design rather than a single solution. From these alternatives, the decision-maker can choose the best one according to his/her preferences and the applicable legislation. The capabilities of the proposed method are illustrated in a case study problem that addresses the design of a typical absorption cooling system.

Suggested Citation

  • Gebreslassie, Berhane H. & Guillén-Gosálbez, Gonzalo & Jiménez, Laureano & Boer, Dieter, 2009. "Design of environmentally conscious absorption cooling systems via multi-objective optimization and life cycle assessment," Applied Energy, Elsevier, vol. 86(9), pages 1712-1722, September.
  • Handle: RePEc:eee:appene:v:86:y:2009:i:9:p:1712-1722
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306-2619(08)00304-8
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Best, R. & Islas, J. & Martínez, M., 1993. "Exergy efficiency of an ammonia-water absorption system for ice production," Applied Energy, Elsevier, vol. 45(3), pages 241-256.
    2. Riva, Angelo & D'Angelosante, Simona & Trebeschi, Carla, 2006. "Natural gas and the environmental results of life cycle assessment," Energy, Elsevier, vol. 31(1), pages 138-148.
    3. Şencan, Arzu & Yakut, Kemal A. & Kalogirou, Soteris A., 2005. "Exergy analysis of lithium bromide/water absorption systems," Renewable Energy, Elsevier, vol. 30(5), pages 645-657.
    4. Masruroh, Nur Aini & Li, Bo & Klemeš, Jiri, 2006. "Life cycle analysis of a solar thermal system with thermochemical storage process," Renewable Energy, Elsevier, vol. 31(4), pages 537-548.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gebreslassie, Berhane H. & Medrano, Marc & Boer, Dieter, 2010. "Exergy analysis of multi-effect water–LiBr absorption systems: From half to triple effect," Renewable Energy, Elsevier, vol. 35(8), pages 1773-1782.
    2. Perry, Simon & Klemeš, Jiří & Bulatov, Igor, 2008. "Integrating waste and renewable energy to reduce the carbon footprint of locally integrated energy sectors," Energy, Elsevier, vol. 33(10), pages 1489-1497.
    3. Xizhuo Zhang & Longfei Zhang & Yujun Yuan & Qiang Zhai, 2020. "Life Cycle Assessment on Wave and Tidal Energy Systems: A Review of Current Methodological Practice," IJERPH, MDPI, vol. 17(5), pages 1-13, March.
    4. Pinel, Patrice & Cruickshank, Cynthia A. & Beausoleil-Morrison, Ian & Wills, Adam, 2011. "A review of available methods for seasonal storage of solar thermal energy in residential applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(7), pages 3341-3359, September.
    5. M. A. Parvez Mahmud & Nazmul Huda & Shahjadi Hisan Farjana & Candace Lang, 2018. "Environmental Impacts of Solar-Photovoltaic and Solar-Thermal Systems with Life-Cycle Assessment," Energies, MDPI, vol. 11(9), pages 1-21, September.
    6. Kaynakli, O., 2008. "The first and second law analysis of a lithium bromide/water coil absorber," Energy, Elsevier, vol. 33(5), pages 804-816.
    7. N'Tsoukpoe, K. Edem & Liu, Hui & Le Pierrès, Nolwenn & Luo, Lingai, 2009. "A review on long-term sorption solar energy storage," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(9), pages 2385-2396, December.
    8. Klemeš, Jiří Jaromír & Varbanov, Petar Sabev & Walmsley, Timothy G. & Jia, Xuexiu, 2018. "New directions in the implementation of Pinch Methodology (PM)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 98(C), pages 439-468.
    9. Cavalieri, Francesco, 2020. "Seismic risk assessment of natural gas networks with steady-state flow computation," International Journal of Critical Infrastructure Protection, Elsevier, vol. 28(C).
    10. Dakkama, H.J. & Elsayed, A. & AL-Dadah, R.K. & Mahmoud, S.M. & Youssef, P., 2017. "Integrated evaporator–condenser cascaded adsorption system for low temperature cooling using different working pairs," Applied Energy, Elsevier, vol. 185(P2), pages 2117-2126.
    11. Koroneos, C. & Nanaki, E. & Xydis, G., 2010. "Solar air conditioning systems and their applicability—An exergy approach," Resources, Conservation & Recycling, Elsevier, vol. 55(1), pages 74-82.
    12. Marín, P.E. & Milian, Y. & Ushak, S. & Cabeza, L.F. & Grágeda, M. & Shire, G.S.F., 2021. "Lithium compounds for thermochemical energy storage: A state-of-the-art review and future trends," Renewable and Sustainable Energy Reviews, Elsevier, vol. 149(C).
    13. Onan, C. & Ozkan, D.B. & Erdem, S., 2010. "Exergy analysis of a solar assisted absorption cooling system on an hourly basis in villa applications," Energy, Elsevier, vol. 35(12), pages 5277-5285.
    14. Zhu, Linghui & Gu, Junjie, 2010. "Second law-based thermodynamic analysis of ammonia/sodium thiocyanate absorption system," Renewable Energy, Elsevier, vol. 35(9), pages 1940-1946.
    15. Akbi, Amine & Yassaa, Noureddine & Boudjema, Rachid & Aliouat, Boualem, 2016. "A new method for cost of renewable energy production in Algeria: Integrate all benefits drawn from fossil fuel savings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 1150-1157.
    16. Chahartaghi, Mahmood & Sheykhi, Mohammad, 2019. "Energy, environmental and economic evaluations of a CCHP system driven by Stirling engine with helium and hydrogen as working gases," Energy, Elsevier, vol. 174(C), pages 1251-1266.
    17. Szabó, Gábor L. & Kalmár, Ferenc, 2019. "Investigation of energy and exergy performances of radiant cooling systems in buildings – A design approach," Energy, Elsevier, vol. 185(C), pages 449-462.
    18. Agnieszka Jachura & Robert Sekret, 2021. "Life Cycle Assessment of the Use of Phase Change Material in an Evacuated Solar Tube Collector," Energies, MDPI, vol. 14(14), pages 1-18, July.
    19. Wonchala, Jason & Hazledine, Maxwell & Goni Boulama, Kiari, 2014. "Solution procedure and performance evaluation for a water–LiBr absorption refrigeration machine," Energy, Elsevier, vol. 65(C), pages 272-284.
    20. Isye Hayatina & Amar Auckaili & Mohammed Farid, 2023. "Review on the Life Cycle Assessment of Thermal Energy Storage Used in Building Applications," Energies, MDPI, vol. 16(3), pages 1-17, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:86:y:2009:i:9:p:1712-1722. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.