IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v31y2006i4p537-548.html
   My bibliography  Save this article

Life cycle analysis of a solar thermal system with thermochemical storage process

Author

Listed:
  • Masruroh, Nur Aini
  • Li, Bo
  • Klemeš, Jiri

Abstract

Solar energy itself is generally considered as environmentally friendly, nevertheless it is still important to take into consideration the environmental impacts caused by production of thousands of solar thermal systems. In this work the standard LCA methodology has been extended to analyse the total environmental impacts of a new more efficient solar thermal system SOLARSTORE during its whole life cycle. This system is being developed by a 5th Framework EC project. The LCA results show that to produce 1GJ energy with SOLARSTORE system will result in global warming potential of 6.3–10kg CO2, acidification potential of 46.6–70g SO2, eutrophication of 2.1–3.1g phosphate and photochemical oxidant of 0.99–1.5g C2H4. The raw material acquisition and components manufacturing processes contribute 99% to the total environmental impacts. In comparison with traditional heating systems, SOLARSTORE system provides a considerably better solution for reduction of negative environmental impacts by using solar energy more efficiently.

Suggested Citation

  • Masruroh, Nur Aini & Li, Bo & Klemeš, Jiri, 2006. "Life cycle analysis of a solar thermal system with thermochemical storage process," Renewable Energy, Elsevier, vol. 31(4), pages 537-548.
  • Handle: RePEc:eee:renene:v:31:y:2006:i:4:p:537-548
    DOI: 10.1016/j.renene.2005.03.008
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148105000728
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2005.03.008?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Mirasgedis, S. & Diakoulaki, D. & Assimacopoulos, D., 1996. "Solar energy and the abatement of atmospheric emissions," Renewable Energy, Elsevier, vol. 7(4), pages 329-338.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Roger A. Samson & Stephanie Bailey Stamler, 2009. "Going Green for Less: Cost-Effective Alternative Energy Sources," C.D. Howe Institute Commentary, C.D. Howe Institute, issue 282, February.
    2. Isye Hayatina & Amar Auckaili & Mohammed Farid, 2023. "Review on the Life Cycle Assessment of Thermal Energy Storage Used in Building Applications," Energies, MDPI, vol. 16(3), pages 1-17, January.
    3. Marín, P.E. & Milian, Y. & Ushak, S. & Cabeza, L.F. & Grágeda, M. & Shire, G.S.F., 2021. "Lithium compounds for thermochemical energy storage: A state-of-the-art review and future trends," Renewable and Sustainable Energy Reviews, Elsevier, vol. 149(C).
    4. Nagel, T. & Shao, H. & Singh, A.K. & Watanabe, N. & Roßkopf, C. & Linder, M. & Wörner, A. & Kolditz, O., 2013. "Non-equilibrium thermochemical heat storage in porous media: Part 1 – Conceptual model," Energy, Elsevier, vol. 60(C), pages 254-270.
    5. Solé, Aran & Miró, Laia & Barreneche, Camila & Martorell, Ingrid & Cabeza, Luisa F., 2015. "Corrosion of metals and salt hydrates used for thermochemical energy storage," Renewable Energy, Elsevier, vol. 75(C), pages 519-523.
    6. Allen, S.R. & Hammond, G.P. & Harajli, H.A. & McManus, M.C. & Winnett, A.B., 2010. "Integrated appraisal of a Solar Hot Water system," Energy, Elsevier, vol. 35(3), pages 1351-1362.
    7. Martínez, E. & Sanz, F. & Pellegrini, S. & Jiménez, E. & Blanco, J., 2009. "Life cycle assessment of a multi-megawatt wind turbine," Renewable Energy, Elsevier, vol. 34(3), pages 667-673.
    8. Perry, Simon & Klemeš, Jiří & Bulatov, Igor, 2008. "Integrating waste and renewable energy to reduce the carbon footprint of locally integrated energy sectors," Energy, Elsevier, vol. 33(10), pages 1489-1497.
    9. N'Tsoukpoe, K. Edem & Liu, Hui & Le Pierrès, Nolwenn & Luo, Lingai, 2009. "A review on long-term sorption solar energy storage," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(9), pages 2385-2396, December.
    10. Agnieszka Jachura & Robert Sekret, 2021. "Life Cycle Assessment of the Use of Phase Change Material in an Evacuated Solar Tube Collector," Energies, MDPI, vol. 14(14), pages 1-18, July.
    11. Edgar A. Barragán-Escandón & Esteban Zalamea-León & John Calle-Sigüencia & Julio Terrados-Cepeda, 2022. "Impact of Solar Thermal Energy on the Energy Matrix under Equatorial Andean Context," Energies, MDPI, vol. 15(16), pages 1-25, August.
    12. Greening, Benjamin & Azapagic, Adisa, 2014. "Domestic solar thermal water heating: A sustainable option for the UK?," Renewable Energy, Elsevier, vol. 63(C), pages 23-36.
    13. Klemeš, Jiří Jaromír & Varbanov, Petar Sabev & Walmsley, Timothy G. & Jia, Xuexiu, 2018. "New directions in the implementation of Pinch Methodology (PM)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 98(C), pages 439-468.
    14. Martínez, E. & Jiménez, E. & Blanco, J. & Sanz, F., 2010. "LCA sensitivity analysis of a multi-megawatt wind turbine," Applied Energy, Elsevier, vol. 87(7), pages 2293-2303, July.
    15. Pinel, Patrice & Cruickshank, Cynthia A. & Beausoleil-Morrison, Ian & Wills, Adam, 2011. "A review of available methods for seasonal storage of solar thermal energy in residential applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(7), pages 3341-3359, September.
    16. Lamnatou, Chr. & Chemisana, D. & Mateus, R. & Almeida, M.G. & Silva, S.M., 2015. "Review and perspectives on Life Cycle Analysis of solar technologies with emphasis on building-integrated solar thermal systems," Renewable Energy, Elsevier, vol. 75(C), pages 833-846.
    17. Lamnatou, Chr. & Mondol, J.D. & Chemisana, D. & Maurer, C., 2015. "Modelling and simulation of Building-Integrated solar thermal systems: Behaviour of the coupled building/system configuration," Renewable and Sustainable Energy Reviews, Elsevier, vol. 48(C), pages 178-191.
    18. M. A. Parvez Mahmud & Nazmul Huda & Shahjadi Hisan Farjana & Candace Lang, 2018. "Environmental Impacts of Solar-Photovoltaic and Solar-Thermal Systems with Life-Cycle Assessment," Energies, MDPI, vol. 11(9), pages 1-21, September.
    19. Shao, H. & Nagel, T. & Roßkopf, C. & Linder, M. & Wörner, A. & Kolditz, O., 2013. "Non-equilibrium thermo-chemical heat storage in porous media: Part 2 – A 1D computational model for a calcium hydroxide reaction system," Energy, Elsevier, vol. 60(C), pages 271-282.
    20. Gebreslassie, Berhane H. & Guillén-Gosálbez, Gonzalo & Jiménez, Laureano & Boer, Dieter, 2009. "Design of environmentally conscious absorption cooling systems via multi-objective optimization and life cycle assessment," Applied Energy, Elsevier, vol. 86(9), pages 1712-1722, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sidiras, D. & Koukios, E., 2004. "Simulation of the solar hot water systems diffusion: the case of Greece," Renewable Energy, Elsevier, vol. 29(6), pages 907-919.
    2. Tsilingiridis, G. & Martinopoulos, G. & Kyriakis, N., 2004. "Life cycle environmental impact of a thermosyphonic domestic solar hot water system in comparison with electrical and gas water heating," Renewable Energy, Elsevier, vol. 29(8), pages 1277-1288.
    3. Ardente, Fulvio & Beccali, Giorgio & Cellura, Maurizio & Lo Brano, Valerio, 2005. "Life cycle assessment of a solar thermal collector," Renewable Energy, Elsevier, vol. 30(7), pages 1031-1054.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:31:y:2006:i:4:p:537-548. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.