IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v35y2010i9p1940-1946.html
   My bibliography  Save this article

Second law-based thermodynamic analysis of ammonia/sodium thiocyanate absorption system

Author

Listed:
  • Zhu, Linghui
  • Gu, Junjie

Abstract

In this study, the first and second law of thermodynamics are used to analyze the performance of a novel absorption system for cooling and heating applications. The active component of the sorbent used in this study is sodium thiocyanate (NaSCN). Ammonia (NH3) is chosen as sorptive. A mathematic model based on exergy analysis is introduced to analyze the system performance. Enthalpy, entropy, temperature, mass flow rate and exergy loss of each component and the total exergy loss of the system are evaluated. Furthermore, the coefficient of performance (COP) and exergetic efficiency of the absorption system for cooling and heating processes are calculated from the thermodynamic properties of the working fluids under different operating conditions. The results show that the COP of cooling and heating increases with the heat source temperature and decreases with the cooling water inlet temperature, but the system exergetic efficiency does not show the same trends for both cooling and heating applications. The simulation results can be used for the thermodynamic optimization of the current system.

Suggested Citation

  • Zhu, Linghui & Gu, Junjie, 2010. "Second law-based thermodynamic analysis of ammonia/sodium thiocyanate absorption system," Renewable Energy, Elsevier, vol. 35(9), pages 1940-1946.
  • Handle: RePEc:eee:renene:v:35:y:2010:i:9:p:1940-1946
    DOI: 10.1016/j.renene.2010.01.022
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S096014811000039X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2010.01.022?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Şencan, Arzu & Yakut, Kemal A. & Kalogirou, Soteris A., 2005. "Exergy analysis of lithium bromide/water absorption systems," Renewable Energy, Elsevier, vol. 30(5), pages 645-657.
    2. Wang, S.G. & Wang, R.Z., 2005. "Recent developments of refrigeration technology in fishing vessels," Renewable Energy, Elsevier, vol. 30(4), pages 589-600.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ayou, Dereje S. & Bruno, Joan Carles & Coronas, Alberto, 2017. "Integration of a mechanical and thermal compressor booster in combined absorption power and refrigeration cycles," Energy, Elsevier, vol. 135(C), pages 327-341.
    2. Takeshita, Keisuke & Amano, Yoshiharu, 2018. "Optimal operating conditions and cost-effectiveness of a single-stage ammonia/water absorption refrigerator based on exergy analysis," Energy, Elsevier, vol. 155(C), pages 1066-1076.
    3. Zhao Chen & Zaidi Mohd Ripin & Jie Wang, 2024. "Thermodynamic and Economic Analysis of a Phosphoric Acid Fuel Cell Combined Heating Cooling and Power System," Energies, MDPI, vol. 17(16), pages 1-16, August.
    4. Chen, Wei & Bai, Yang, 2016. "Thermal performance of an absorption-refrigeration system with [emim]Cu2Cl5/NH3 as working fluid," Energy, Elsevier, vol. 112(C), pages 332-341.
    5. Wu, Wei & Wang, Baolong & Shi, Wenxing & Li, Xianting, 2014. "An overview of ammonia-based absorption chillers and heat pumps," Renewable and Sustainable Energy Reviews, Elsevier, vol. 31(C), pages 681-707.
    6. Larry Orobome Agberegha & Peter Alenoghena Aigba & Solomon Chuka Nwigbo & Francis Onoroh & Olusegun David Samuel & Tanko Bako & Oguzhan Der & Ali Ercetin & Ramazan Sener, 2024. "Investigation of a Hybridized Cascade Trigeneration Cycle Combined with a District Heating and Air Conditioning System Using Vapour Absorption Refrigeration Cooling: Energy and Exergy Assessments," Energies, MDPI, vol. 17(6), pages 1-34, March.
    7. Garousi Farshi, L. & Mosaffa, A.H. & Infante Ferreira, C.A. & Rosen, M.A., 2014. "Thermodynamic analysis and comparison of combined ejector–absorption and single effect absorption refrigeration systems," Applied Energy, Elsevier, vol. 133(C), pages 335-346.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gebreslassie, Berhane H. & Medrano, Marc & Boer, Dieter, 2010. "Exergy analysis of multi-effect water–LiBr absorption systems: From half to triple effect," Renewable Energy, Elsevier, vol. 35(8), pages 1773-1782.
    2. Mahesh, A., 2017. "Solar collectors and adsorption materials aspects of cooling system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 1300-1312.
    3. Kaynakli, O., 2008. "The first and second law analysis of a lithium bromide/water coil absorber," Energy, Elsevier, vol. 33(5), pages 804-816.
    4. Cabeza, Luisa F. & Solé, Aran & Barreneche, Camila, 2017. "Review on sorption materials and technologies for heat pumps and thermal energy storage," Renewable Energy, Elsevier, vol. 110(C), pages 3-39.
    5. Brancato, V. & Frazzica, A. & Sapienza, A. & Gordeeva, L. & Freni, A., 2015. "Ethanol adsorption onto carbonaceous and composite adsorbents for adsorptive cooling system," Energy, Elsevier, vol. 84(C), pages 177-185.
    6. Koroneos, C. & Nanaki, E. & Xydis, G., 2010. "Solar air conditioning systems and their applicability—An exergy approach," Resources, Conservation & Recycling, Elsevier, vol. 55(1), pages 74-82.
    7. Yi, Yuhao & Xie, Xiaoyun & Zhang, Hao & Jiang, Yi, 2024. "Theoretical perfection and application of entransy analysis method on absorption systems," Energy, Elsevier, vol. 307(C).
    8. Siddiqui, M.U. & Said, S.A.M., 2015. "A review of solar powered absorption systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 93-115.
    9. Onan, C. & Ozkan, D.B. & Erdem, S., 2010. "Exergy analysis of a solar assisted absorption cooling system on an hourly basis in villa applications," Energy, Elsevier, vol. 35(12), pages 5277-5285.
    10. Chahartaghi, Mahmood & Sheykhi, Mohammad, 2019. "Energy, environmental and economic evaluations of a CCHP system driven by Stirling engine with helium and hydrogen as working gases," Energy, Elsevier, vol. 174(C), pages 1251-1266.
    11. Szabó, Gábor L. & Kalmár, Ferenc, 2019. "Investigation of energy and exergy performances of radiant cooling systems in buildings – A design approach," Energy, Elsevier, vol. 185(C), pages 449-462.
    12. Khan, Mohammed Mumtaz A. & Saidur, R. & Al-Sulaiman, Fahad A., 2017. "A review for phase change materials (PCMs) in solar absorption refrigeration systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 105-137.
    13. Wonchala, Jason & Hazledine, Maxwell & Goni Boulama, Kiari, 2014. "Solution procedure and performance evaluation for a water–LiBr absorption refrigeration machine," Energy, Elsevier, vol. 65(C), pages 272-284.
    14. Rosiek, S. & Batlles, F.J., 2009. "Integration of the solar thermal energy in the construction: Analysis of the solar-assisted air-conditioning system installed in CIESOL building," Renewable Energy, Elsevier, vol. 34(6), pages 1423-1431.
    15. Ustaoglu, Abid, 2020. "Parametric study of absorption refrigeration with vapor compression refrigeration cycle using wet, isentropic and azeotropic working fluids: Conventional and advanced exergy approach," Energy, Elsevier, vol. 201(C).
    16. Gong, Sunyoung & Goni Boulama, Kiari, 2014. "Parametric study of an absorption refrigeration machine using advanced exergy analysis," Energy, Elsevier, vol. 76(C), pages 453-467.
    17. Gebreslassie, Berhane H. & Guillén-Gosálbez, Gonzalo & Jiménez, Laureano & Boer, Dieter, 2009. "Design of environmentally conscious absorption cooling systems via multi-objective optimization and life cycle assessment," Applied Energy, Elsevier, vol. 86(9), pages 1712-1722, September.
    18. Gebreslassie, Berhane H. & Groll, Eckhard A. & Garimella, Suresh V., 2012. "Multi-objective optimization of sustainable single-effect water/Lithium Bromide absorption cycle," Renewable Energy, Elsevier, vol. 46(C), pages 100-110.
    19. Anvari, Simin & Khoshbakhti Saray, Rahim & Bahlouli, Keyvan, 2015. "Conventional and advanced exergetic and exergoeconomic analyses applied to a tri-generation cycle for heat, cold and power production," Energy, Elsevier, vol. 91(C), pages 925-939.
    20. Shu, Gequn & Liang, Youcai & Wei, Haiqiao & Tian, Hua & Zhao, Jian & Liu, Lina, 2013. "A review of waste heat recovery on two-stroke IC engine aboard ships," Renewable and Sustainable Energy Reviews, Elsevier, vol. 19(C), pages 385-401.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:35:y:2010:i:9:p:1940-1946. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.