IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v17y2024i14p3501-d1436763.html
   My bibliography  Save this article

Evaluating the Impact of CO 2 Capture on the Operation of Combined Cycles with Different Configurations

Author

Listed:
  • Elena Savoldelli

    (Department of Engineering and Applied Sciences, University of Bergamo, Viale Marconi 5, 24044 Dalmine, Italy)

  • Silvia Ravelli

    (Department of Engineering and Applied Sciences, University of Bergamo, Viale Marconi 5, 24044 Dalmine, Italy)

Abstract

In order to reduce greenhouse gas emissions associated with power generation, the replacement of fossil fuels with renewables must be accompanied by the availability of dispatchable sources needed to balance electricity demand and production. Combined cycle (CC) power plants adopting post-combustion capture (PCC) can serve this purpose, ensuring near-zero CO 2 emissions at the stack, as well as high efficiency and load flexibility. In particular, the chemical absorption process is the most established approach for industrial-scale applications, although widespread implementation is lacking. In this study, different natural gas combined cycle (NGCC) configurations were modeled to estimate the burden of retrofitting the capture process to existing power plants on thermodynamic performance. Simulations under steady-state conditions covered the widest possible load range, depending on the gas turbine (GT) model. Attention was paid to the net power loss and net efficiency penalty attributable to PCC. The former can be mitigated by lowering the GT air–fuel ratio to increase the CO 2 concentration (X CO2 ) in the exhaust, thus decreasing the regeneration energy. The latter is reduced when the topping cycle is more efficient than the bottoming cycle for a given GT load. This is likely to be the case in the less-complex heat recovery units.

Suggested Citation

  • Elena Savoldelli & Silvia Ravelli, 2024. "Evaluating the Impact of CO 2 Capture on the Operation of Combined Cycles with Different Configurations," Energies, MDPI, vol. 17(14), pages 1-22, July.
  • Handle: RePEc:gam:jeners:v:17:y:2024:i:14:p:3501-:d:1436763
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/17/14/3501/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/17/14/3501/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Kumar, Tharun Roshan & Beiron, Johanna & Biermann, Maximilian & Harvey, Simon & Thunman, Henrik, 2023. "Plant and system-level performance of combined heat and power plants equipped with different carbon capture technologies," Applied Energy, Elsevier, vol. 338(C).
    2. Variny, Miroslav & Mierka, Otto, 2009. "Improvement of part load efficiency of a combined cycle power plant provisioning ancillary services," Applied Energy, Elsevier, vol. 86(6), pages 888-894, June.
    3. Vega, F. & Baena-Moreno, F.M. & Gallego Fernández, Luz M. & Portillo, E. & Navarrete, B. & Zhang, Zhien, 2020. "Current status of CO2 chemical absorption research applied to CCS: Towards full deployment at industrial scale," Applied Energy, Elsevier, vol. 260(C).
    4. Vaccarelli, Maura & Sammak, Majed & Jonshagen, Klas & Carapellucci, Roberto & Genrup, Magnus, 2016. "Combined cycle power plants with post-combustion CO2 capture: Energy analysis at part load conditions for different HRSG configurations," Energy, Elsevier, vol. 112(C), pages 917-925.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Feng, Chao & Zhu, Rong & Wei, Guangsheng & Dong, Kai & Xia, Tao, 2023. "Typical case of CO2 capture in Chinese iron and steel enterprises: Exergy analysis," Applied Energy, Elsevier, vol. 336(C).
    2. Song, Xueyi & Yuan, Junjie & Yang, Chen & Deng, Gaofeng & Wang, Zhichao & Gao, Jubao, 2023. "Carbon dioxide separation performance evaluation of amine-based versus choline-based deep eutectic solvents," Renewable and Sustainable Energy Reviews, Elsevier, vol. 184(C).
    3. Emblemsvåg, Jan, 2022. "Wind energy is not sustainable when balanced by fossil energy," Applied Energy, Elsevier, vol. 305(C).
    4. Ren, Siyue & Feng, Xiao & Wang, Yufei, 2021. "Emergy evaluation of the integrated gasification combined cycle power generation systems with a carbon capture system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 147(C).
    5. Barelli, Linda & Ottaviano, Andrea, 2015. "Supercharged gas turbine combined cycle: An improvement in plant flexibility and efficiency," Energy, Elsevier, vol. 81(C), pages 615-626.
    6. Josselyne A. Villarroel & Alex Palma-Cando & Alfredo Viloria & Marvin Ricaurte, 2021. "Kinetic and Thermodynamic Analysis of High-Pressure CO 2 Capture Using Ethylenediamine: Experimental Study and Modeling," Energies, MDPI, vol. 14(20), pages 1-15, October.
    7. Yang, Cheng & Huang, Zhifeng & Ma, Xiaoqian, 2018. "Comparative study on off-design characteristics of CHP based on GTCC under alternative operating strategy for gas turbine," Energy, Elsevier, vol. 145(C), pages 823-838.
    8. Baena-Moreno, Francisco M. & Pastor-Pérez, Laura & Zhang, Zhien & Reina, T.R., 2020. "Stepping towards a low-carbon economy. Formic acid from biogas as case of study," Applied Energy, Elsevier, vol. 268(C).
    9. Georgios Varvoutis & Athanasios Lampropoulos & Evridiki Mandela & Michalis Konsolakis & George E. Marnellos, 2022. "Recent Advances on CO 2 Mitigation Technologies: On the Role of Hydrogenation Route via Green H 2," Energies, MDPI, vol. 15(13), pages 1-38, June.
    10. Zhou, Xiaobin & Liu, Chao & Fan, Yinming & Zhang, Lihao & Tang, Shen & Mo, Shengpeng & Zhu, Yinian & Zhu, Zongqiang, 2022. "Energy-efficient carbon dioxide capture using a novel low-viscous secondary amine-based nonaqueous biphasic solvent: Performance, mechanism, and thermodynamics," Energy, Elsevier, vol. 255(C).
    11. Colmenar-Santos, Antonio & Gómez-Camazón, David & Rosales-Asensio, Enrique & Blanes-Peiró, Jorge-Juan, 2018. "Technological improvements in energetic efficiency and sustainability in existing combined-cycle gas turbine (CCGT) power plants," Applied Energy, Elsevier, vol. 223(C), pages 30-51.
    12. Wu, Xiaomei & Fan, Huifeng & Mao, Yuanhao & Sharif, Maimoona & Yu, Yunsong & Zhang, Zaoxiao & Liu, Guangxin, 2022. "Systematic study of an energy efficient MEA-based electrochemical CO2 capture process: From mechanism to practical application," Applied Energy, Elsevier, vol. 327(C).
    13. Shen, Peiliang & Jiang, Yi & Zhang, Yangyang & Liu, Songhui & Xuan, Dongxing & Lu, Jianxin & Zhang, Shipeng & Poon, Chi Sun, 2023. "Production of aragonite whiskers by carbonation of fine recycled concrete wastes: An alternative pathway for efficient CO2 sequestration," Renewable and Sustainable Energy Reviews, Elsevier, vol. 173(C).
    14. Zhang, Xue & Li, Lei & Su, Yuliang & Da, Qi'an & Fu, Jingang & Wang, Rujun & Chen, Fangfang, 2023. "Microfluidic investigation on asphaltene interfaces attempts to carbon sequestration and leakage: Oil-CO2 phase interaction characteristics at ultrahigh temperature and pressure," Applied Energy, Elsevier, vol. 348(C).
    15. Han, Sung-Chul & Sung, Hail & Noh, Hye-Won & Mazari, Shaukat Ali & Moon, Jong-Ho & Kim, Kyung-Min, 2024. "Synergistic effect of blended amines on carbon dioxide absorption: Thermodynamic modeling and analysis of regeneration energy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 197(C).
    16. Sang‐Jun Han & Jung‐Ho Wee, 2021. "Comparison of CO2 absorption performance between methyl‐di‐ ethanolamine and tri‐ethanolamine solution systems and its analysis in terms of amine molecules," Greenhouse Gases: Science and Technology, Blackwell Publishing, vol. 11(3), pages 445-460, June.
    17. Saharudin, Djasmine Mastisya & Jeswani, Harish Kumar & Azapagic, Adisa, 2023. "Bioenergy with carbon capture and storage (BECSS): Life cycle environmental and economic assessment of electricity generated from palm oil wastes," Applied Energy, Elsevier, vol. 349(C).
    18. Eero Inkeri & Tero Tynjälä, 2020. "Modeling of CO 2 Capture with Water Bubble Column Reactor," Energies, MDPI, vol. 13(21), pages 1-13, November.
    19. Emmanouela Leventaki & Francisco M. Baena-Moreno & Gaetano Sardina & Henrik Ström & Ebrahim Ghahramani & Shirin Naserifar & Phuoc Hoang Ho & Aleksandra M. Kozlowski & Diana Bernin, 2022. "In-Line Monitoring of Carbon Dioxide Capture with Sodium Hydroxide in a Customized 3D-Printed Reactor without Forced Mixing," Sustainability, MDPI, vol. 14(17), pages 1-13, August.
    20. Ya Wang & Jian-Xin Wei & Hong-Liang Tang & Lu-Hua Shao & Long-Zhang Dong & Xiao-Yu Chu & Yan-Xia Jiang & Gui-Ling Zhang & Feng-Ming Zhang & Ya-Qian Lan, 2024. "Artificial photosynthetic system for diluted CO2 reduction in gas-solid phase," Nature Communications, Nature, vol. 15(1), pages 1-13, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:14:p:3501-:d:1436763. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.