IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v84y2009i7-8p675-700.html
   My bibliography  Save this article

Industrial energy analysis, thermodynamics and sustainability

Author

Listed:
  • Hammond, Geoffrey P.

Abstract

Thermodynamic methods of (energy and exergy) analysis are employed to illustrate energy use in industry. The scope for increasing energy efficiency, and the extent of exergetic [`]improvement potential' are examined. Poor thermodynamic performance is principally the result of exergy losses in combustion and heat-transfer processes. The late Professor Willem van Gool (a distinguished Dutch physical chemist) was at the forefront of the development and application of energy and exergy methods. He also explored the link between energy and economics. The work of van Gool and others researchers who laid down the foundations of industrial energy analysis are reviewed. These contributions are placed in the broader context of the modern paradigm of sustainable development, and their implications for the future direction of European Union energy and environmental strategies are discussed. Thermodynamic concepts have been utilised by practitioners in a variety of disciplines with interests in environmental sustainability, including ecology, economics and engineering. Widespread concern about resource depletion and environmental degradation are common to them all. Van Gool was instrumental in stimulating a dialogue across the economic and physical sciences. Some researchers view thermodynamic parameters as mirroring energy transformations within society. However, it is argued (after Hammond GP. Engineering sustainability: thermodynamics, energy systems, and the environment. Int J Energy Res 2004;28:613-639.) that they may simply reflect a weak analogy or metaphor, rather than representing thermodynamic limits in a physical sense.

Suggested Citation

  • Hammond, Geoffrey P., 2009. "Industrial energy analysis, thermodynamics and sustainability," Applied Energy, Elsevier, vol. 84(7-8), pages 675-700, July.
  • Handle: RePEc:eee:appene:v:84:y:2009:i:7-8:p:675-700
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306-2619(07)00005-0
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. World Commission on Environment and Development,, 1987. "Our Common Future," OUP Catalogue, Oxford University Press, number 9780192820808, Decembrie.
    2. Wall, Goran, 1987. "Exergy conversion in the Swedish society," Resources and Energy, Elsevier, vol. 9(1), pages 55-73, June.
    3. Göran Broman & John Holmberg & Karl-Henrik Robört, 2000. "Simplicity Without Reduction: Thinking Upstream Towards the Sustainable Society," Interfaces, INFORMS, vol. 30(3), pages 13-25, June.
    4. Caton, Jerald A, 2000. "On the destruction of availability (exergy) due to combustion processes — with specific application to internal-combustion engines," Energy, Elsevier, vol. 25(11), pages 1097-1117.
    5. van Gool, W., 1987. "The value of energy carriers," Energy, Elsevier, vol. 12(6), pages 509-518.
    6. Bilgen, E, 2000. "Exergetic and engineering analyses of gas turbine based cogeneration systems," Energy, Elsevier, vol. 25(12), pages 1215-1229.
    7. Geoffrey P. Hammond, 2004. "Engineering Sustainability: Thermodynamics, Energy Systems and the Environment," Palgrave Macmillan Books, in: Adrian Winnett (ed.), Towards an Environment Research Agenda, chapter 8, pages 175-210, Palgrave Macmillan.
    8. Geoffrey P. Hammond & Adrian B. Winnett, 2004. "Some Interdisciplinary Perspectives on Environmental Appraisal and Valuation," Palgrave Macmillan Books, in: Adrian Winnett (ed.), Towards an Environment Research Agenda, chapter 1, pages 3-33, Palgrave Macmillan.
    9. van Gool, Willem, 1992. "Exergy analysis of industrial processes," Energy, Elsevier, vol. 17(8), pages 791-803.
    10. Rosen, M.A., 1992. "Evaluation of energy utilization efficiency in Canada using energy and exergy analyses," Energy, Elsevier, vol. 17(4), pages 339-350.
    11. Wall, Göran, 1990. "Exergy conversion in the Japanese society," Energy, Elsevier, vol. 15(5), pages 435-444.
    12. Hammond, Geoffrey P., 1996. "Nuclear energy into the twenty-first century," Applied Energy, Elsevier, vol. 54(4), pages 327-344, August.
    13. Paul Upham, 2000. "Scientific consensus on sustainability: the case of The Natural Step," Sustainable Development, John Wiley & Sons, Ltd., vol. 8(4), pages 180-190.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Geoffrey P Hammond & Hayley R Howard & Andrew Tuck, 2012. "Risk assessment of UK biofuel developments within the rapidly evolving energy and transport sectors," Journal of Risk and Reliability, , vol. 226(5), pages 526-548, October.
    2. Geoffrey P. Hammond, 2006. "‘People, planet and prosperity’: The determinants of humanity's environmental footprint," Natural Resources Forum, Blackwell Publishing, vol. 30(1), pages 27-36, February.
    3. Chen, G.Q. & Qi, Z.H., 2007. "Systems account of societal exergy utilization: China 2003," Ecological Modelling, Elsevier, vol. 208(2), pages 102-118.
    4. Hammond, G.P.Geoffrey P., 2004. "Towards sustainability: energy efficiency, thermodynamic analysis, and the `two cultures'," Energy Policy, Elsevier, vol. 32(16), pages 1789-1798, November.
    5. Oladiran, M.T. & Meyer, J.P., 2007. "Energy and exergy analyses of energy consumptions in the industrial sector in South Africa," Applied Energy, Elsevier, vol. 84(10), pages 1056-1067, October.
    6. Chen, G.Q. & Ji, Xi, 2007. "Chemical exergy based evaluation of water quality," Ecological Modelling, Elsevier, vol. 200(1), pages 259-268.
    7. Utlu, Zafer & Hepbasli, Arif, 2008. "Energetic and exergetic assessment of the industrial sector at varying dead (reference) state temperatures: A review with an illustrative example," Renewable and Sustainable Energy Reviews, Elsevier, vol. 12(5), pages 1277-1301, June.
    8. Utlu, Zafer & Hepbasli, Arif, 2007. "A review and assessment of the energy utilization efficiency in the Turkish industrial sector using energy and exergy analysis method," Renewable and Sustainable Energy Reviews, Elsevier, vol. 11(7), pages 1438-1459, September.
    9. Utlu, Zafer & Hepbasli, Arif, 2006. "Estimating the energy and exergy utilization efficiencies for the residential-commercial sector: an application," Energy Policy, Elsevier, vol. 34(10), pages 1097-1105, July.
    10. Geoffrey P. Hammond & Adrian B. Winnett, 2009. "The Influence of Thermodynamic Ideas on Ecological Economics: An Interdisciplinary Critique," Sustainability, MDPI, vol. 1(4), pages 1-31, December.
    11. Ji, Xi & Chen, G.Q., 2006. "Exergy analysis of energy utilization in the transportation sector in China," Energy Policy, Elsevier, vol. 34(14), pages 1709-1719, September.
    12. Bligh, David C. & Ismet Ugursal, V., 2012. "Extended exergy analysis of the economy of Nova Scotia, Canada," Energy, Elsevier, vol. 44(1), pages 878-890.
    13. Hepbasli, Arif & Utlu, Zafer, 2004. "Evaluating the energy utilization efficiency of Turkey's renewable energy sources during 2001," Renewable and Sustainable Energy Reviews, Elsevier, vol. 8(3), pages 237-255, June.
    14. Ertesvåg, Ivar S & Mielnik, Michal, 2000. "Exergy analysis of the Norwegian society," Energy, Elsevier, vol. 25(10), pages 957-973.
    15. Saidur, R. & Sattar, M.A. & Masjuki, H.H. & Abdessalam, H. & Shahruan, B.S., 2007. "Energy and exergy analysis at the utility and commercial sectors of Malaysia," Energy Policy, Elsevier, vol. 35(3), pages 1956-1966, March.
    16. Sousa, Tânia & Brockway, Paul E. & Cullen, Jonathan M. & Henriques, Sofia Teives & Miller, Jack & Serrenho, André Cabrera & Domingos, Tiago, 2017. "The Need for Robust, Consistent Methods in Societal Exergy Accounting," Ecological Economics, Elsevier, vol. 141(C), pages 11-21.
    17. Lucia, Umberto & Grisolia, Giulia, 2017. "Unavailability percentage as energy planning and economic choice parameter," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 197-204.
    18. Utlu, Zafer & Hepbasli, Arif, 2007. "A review on analyzing and evaluating the energy utilization efficiency of countries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 11(1), pages 1-29, January.
    19. Liao, Wenjie & Heijungs, Reinout & Huppes, Gjalt, 2012. "Thermodynamic analysis of human–environment systems: A review focused on industrial ecology," Ecological Modelling, Elsevier, vol. 228(C), pages 76-88.
    20. Warr, Benjamin & Ayres, Robert & Eisenmenger, Nina & Krausmann, Fridolin & Schandl, Heinz, 2010. "Energy use and economic development: A comparative analysis of useful work supply in Austria, Japan, the United Kingdom and the US during 100Â years of economic growth," Ecological Economics, Elsevier, vol. 69(10), pages 1904-1917, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:84:y:2009:i:7-8:p:675-700. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.