IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v84y2007i2p176-186.html
   My bibliography  Save this article

Performance optimization of quantum Brayton refrigeration cycle working with spin systems

Author

Listed:
  • He, Jizhou
  • Xin, Yong
  • He, Xian

Abstract

The new model of a quantum refrigeration cycle composed of two adiabatic and two isomagnetic field processes is established. The working substance in the cycle consists of many non-interacting spin-1/2 systems. The performance of the cycle is investigated, based on the quantum master equation and semi-group approach. The general expressions of several important performance parameters, such as the coefficient of performance, cooling rate and power input, are given. It is found that the coefficient of performance of this cycle is a close analogue of the classical Carnot-cycle. Some performance characteristic curves relating the cooling rate, the coefficient of performance and power input are plotted. Further, for high temperatures, the optimal relations between the cooling rate and the coefficient of performance are analyzed in detail.

Suggested Citation

  • He, Jizhou & Xin, Yong & He, Xian, 2007. "Performance optimization of quantum Brayton refrigeration cycle working with spin systems," Applied Energy, Elsevier, vol. 84(2), pages 176-186, February.
  • Handle: RePEc:eee:appene:v:84:y:2007:i:2:p:176-186
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306-2619(06)00077-8
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. He, Jizhou & Chen, Jincan & Hua, Ben, 2002. "Influence of quantum degeneracy on the performance of a Stirling refrigerator working with an ideal Fermi gas," Applied Energy, Elsevier, vol. 72(3-4), pages 541-554, July.
    2. Sisman, Altug & Saygin, Hasan, 2001. "The improvement effect of quantum degeneracy on the work from a Carnot cycle," Applied Energy, Elsevier, vol. 68(4), pages 367-376, April.
    3. Lin, Bihong & Chen, Jincan, 2004. "Performance analysis of a quantum heat-pump using spin systems as the working substance," Applied Energy, Elsevier, vol. 78(1), pages 75-93, May.
    4. SaygIn, Hasan & Sisman, Altug, 2001. "Brayton refrigeration cycles working under quantum degeneracy conditions," Applied Energy, Elsevier, vol. 69(2), pages 77-85, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. White, A.J., 2009. "Thermodynamic analysis of the reverse Joule-Brayton cycle heat pump for domestic heating," Applied Energy, Elsevier, vol. 86(11), pages 2443-2450, November.
    2. Dalkıran, Alper & Açıkkalp, Emin & Caner, Necmettin, 2016. "Analysis of a quantum irreversible Otto cycle with exergetic sustainable index," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 453(C), pages 316-326.
    3. Aydiner, Ekrem & Han, Seyit Deniz, 2018. "Quantum heat engine model of mixed triangular spin system as a working substance," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 509(C), pages 766-776.
    4. Chen, Lingen & Liu, Xiaowei & Wu, Feng & Xia, Shaojun & Feng, Huijun, 2020. "Exergy-based ecological optimization of an irreversible quantum Carnot heat pump with harmonic oscillators," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 537(C).
    5. Guo, Juncheng & Zhang, Xiuqin & Su, Guozhen & Chen, Jincan, 2012. "The performance analysis of a micro-/nanoscaled quantum heat engine," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(24), pages 6432-6439.
    6. Naseri-Karimvand, H. & Lari, B. & Hassanabadi, H., 2022. "Non-Markovianity and efficiency of a q-deformed quantum heat engine," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 598(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dalkıran, Alper & Açıkkalp, Emin & Caner, Necmettin, 2016. "Analysis of a quantum irreversible Otto cycle with exergetic sustainable index," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 453(C), pages 316-326.
    2. Ahmadi, Mohammad H. & Ahmadi, Mohammad-Ali & Maleki, Akbar & Pourfayaz, Fathollah & Bidi, Mokhtar & Açıkkalp, Emin, 2017. "Exergetic sustainability evaluation and multi-objective optimization of performance of an irreversible nanoscale Stirling refrigeration cycle operating with Maxwell–Boltzmann gas," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 80-92.
    3. He, Jizhou & Chen, Jincan & Hua, Ben, 2002. "Influence of quantum degeneracy on the performance of a Stirling refrigerator working with an ideal Fermi gas," Applied Energy, Elsevier, vol. 72(3-4), pages 541-554, July.
    4. Yang, Yulin & Lin, Bihong & Chen, Jincan, 2006. "Influence of regeneration on the performance of a Brayton refrigeration-cycle working with an ideal Bose-gas," Applied Energy, Elsevier, vol. 83(2), pages 99-112, February.
    5. Guo, Juncheng & Zhang, Xiuqin & Su, Guozhen & Chen, Jincan, 2012. "The performance analysis of a micro-/nanoscaled quantum heat engine," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(24), pages 6432-6439.
    6. Açıkkalp, Emin & Caner, Necmettin, 2015. "Determining of the optimum performance of a nano scale irreversible Dual cycle with quantum gases as working fluid by using different methods," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 433(C), pages 247-258.
    7. Açıkkalp, Emin & Caner, Necmettin, 2015. "Determining performance of an irreversible nano scale dual cycle operating with Maxwell–Boltzmann gas," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 424(C), pages 342-349.
    8. Ahmadi, Mohammad H. & Amin Nabakhteh, Mohammad & Ahmadi, Mohammad-Ali & Pourfayaz, Fathollah & Bidi, Mokhtar, 2017. "Investigation and optimization of performance of nano-scale Stirling refrigerator using working fluid as Maxwell–Boltzmann gases," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 483(C), pages 337-350.
    9. Zemin Ding & Lingen Chen & Fengrui Sun, 2016. "Heating load and COP optimization of a double resonance energy selective electron (ESE) heat pump," International Journal of Low-Carbon Technologies, Oxford University Press, vol. 11(3), pages 383-392.
    10. Lin, Bihong & Chen, Jincan, 2004. "Performance analysis of a quantum heat-pump using spin systems as the working substance," Applied Energy, Elsevier, vol. 78(1), pages 75-93, May.
    11. Zhou, Shengbing & Chen, Lingen & Sun, Fengrui & Wu, Chih, 2004. "Cooling-load density optimization for a regenerated air refrigerator," Applied Energy, Elsevier, vol. 78(3), pages 315-328, July.
    12. Formosa, Fabien & Fréchette, Luc G., 2013. "Scaling laws for free piston Stirling engine design: Benefits and challenges of miniaturization," Energy, Elsevier, vol. 57(C), pages 796-808.
    13. Wu, Feng & Chen, Lingen & Li, Duanyong & Ding, Guozhong & Zhang, Chunping & Kan, Xuxian, 2009. "Thermodynamic performance on a thermo-acoustic micro-cycle under the condition of weak gas degeneracy," Applied Energy, Elsevier, vol. 86(7-8), pages 1119-1123, July.
    14. Tu, Youming & Chen, Lingen & Sun, Fengrui & Wu, Chih, 2006. "Cooling load and coefficient of performance optimizations for real air-refrigerators," Applied Energy, Elsevier, vol. 83(12), pages 1289-1306, December.
    15. Chen, Lingen & Liu, Xiaowei & Wu, Feng & Xia, Shaojun & Feng, Huijun, 2020. "Exergy-based ecological optimization of an irreversible quantum Carnot heat pump with harmonic oscillators," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 537(C).
    16. Yin, Yong & Chen, Lingen & Wu, Feng & Ge, Yanlin, 2020. "Work output and thermal efficiency of an endoreversible entangled quantum Stirling engine with one dimensional isotropic Heisenberg model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 547(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:84:y:2007:i:2:p:176-186. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.