IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v68y2001i4p367-376.html
   My bibliography  Save this article

The improvement effect of quantum degeneracy on the work from a Carnot cycle

Author

Listed:
  • Sisman, Altug
  • Saygin, Hasan

Abstract

The efficiency of a Carnot ([eta]C) cycle is independent of the physical properties of the working gas. Therefore, [eta]C does not change due to quantum degeneracy of the gas. On the other hand, cycle work depends on the physical properties of the working gas since it is determined by the equation of state of the gas. Therefore, cycle work can be influenced by the quantum degeneracy of working gas. Here, Carnot power cycles working with ideal Bose and Fermi gases are examined under quantum degeneracy conditions. They are called Bose and Fermi Carnot cycles respectively. Cycle works of Bose and Fermi Carnot cycles (WB and WF) are derived. By dividing these works into the work of the classical Carnot power cycle (WC), which works with classical ideal gas, work ratios are defined as RWB=WB/WC and RWF=WF/WC. Variations of RWB and RWF with high temperature of the cycle (TH) are examined for a given temperature ratio [tau]=TL/TH and specific volume ratio rv=vH/vL. It is shown that RWB>1 for some values of TH while RWF

Suggested Citation

  • Sisman, Altug & Saygin, Hasan, 2001. "The improvement effect of quantum degeneracy on the work from a Carnot cycle," Applied Energy, Elsevier, vol. 68(4), pages 367-376, April.
  • Handle: RePEc:eee:appene:v:68:y:2001:i:4:p:367-376
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306-2619(00)00063-5
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Açıkkalp, Emin & Caner, Necmettin, 2015. "Determining of the optimum performance of a nano scale irreversible Dual cycle with quantum gases as working fluid by using different methods," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 433(C), pages 247-258.
    2. He, Jizhou & Xin, Yong & He, Xian, 2007. "Performance optimization of quantum Brayton refrigeration cycle working with spin systems," Applied Energy, Elsevier, vol. 84(2), pages 176-186, February.
    3. He, Jizhou & Chen, Jincan & Hua, Ben, 2002. "Influence of quantum degeneracy on the performance of a Stirling refrigerator working with an ideal Fermi gas," Applied Energy, Elsevier, vol. 72(3-4), pages 541-554, July.
    4. Ahmadi, Mohammad H. & Amin Nabakhteh, Mohammad & Ahmadi, Mohammad-Ali & Pourfayaz, Fathollah & Bidi, Mokhtar, 2017. "Investigation and optimization of performance of nano-scale Stirling refrigerator using working fluid as Maxwell–Boltzmann gases," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 483(C), pages 337-350.
    5. Dalkıran, Alper & Açıkkalp, Emin & Caner, Necmettin, 2016. "Analysis of a quantum irreversible Otto cycle with exergetic sustainable index," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 453(C), pages 316-326.
    6. Açıkkalp, Emin & Caner, Necmettin, 2015. "Determining performance of an irreversible nano scale dual cycle operating with Maxwell–Boltzmann gas," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 424(C), pages 342-349.
    7. Lin, Bihong & Chen, Jincan, 2004. "Performance analysis of a quantum heat-pump using spin systems as the working substance," Applied Energy, Elsevier, vol. 78(1), pages 75-93, May.
    8. Ahmadi, Mohammad H. & Ahmadi, Mohammad-Ali & Maleki, Akbar & Pourfayaz, Fathollah & Bidi, Mokhtar & Açıkkalp, Emin, 2017. "Exergetic sustainability evaluation and multi-objective optimization of performance of an irreversible nanoscale Stirling refrigeration cycle operating with Maxwell–Boltzmann gas," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 80-92.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:68:y:2001:i:4:p:367-376. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.