IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v69y2001i2p77-85.html
   My bibliography  Save this article

Brayton refrigeration cycles working under quantum degeneracy conditions

Author

Listed:
  • SaygIn, Hasan
  • Sisman, Altug

Abstract

At sufficiently low temperatures, quantum degeneracy of gas particles becomes important and an ideal gas deviates from the classical ideal-gas behaviour. In such a case, an ideal gas is called a quantum ideal gas. For quantum ideal gases, a corrected equation of state, which considers the quantum behaviour of gas particles, is used instead of the classical one. It is valid for both quantum and classical ideal-gases and it is reduced to a classical ideal-gas equation-of-state, under the classical gas conditions. There are two types of quantum ideal-gases. One of them is the Bose type and the other is the Fermi type. Here, Brayton refrigeration cycles working with Bose and Fermi type ideal quantum gases are considered and they are called Bose and Fermi Brayton cycles respectively. Coefficients of performance and refrigeration loads of these cycles are derived by using the corrected equation of state. It is seen that refrigeration loads are different from those of the classical Brayton cycle, which works with the classical ideal gas. On the other hand, coefficients of performance of these cycles are not effected by the quantum degeneracy of the refrigerant and they are the same as that of the classical cycle. Variations of the refrigeration load with low temperature (TL) and low pressure (PL) are examined. Under the quantum degeneracy conditions, it is shown that the refrigeration load of the Bose Brayton cycle is always greater than that of the classical Brayton cycle. On the contrary, the refrigeration load of the Fermi Brayton cycle is always lower than that of the classical one. Moreover, the minimum value of TL for the Bose Brayton cycle is restricted by the Bose-Einstein condensation temperature for a given value of PL.

Suggested Citation

  • SaygIn, Hasan & Sisman, Altug, 2001. "Brayton refrigeration cycles working under quantum degeneracy conditions," Applied Energy, Elsevier, vol. 69(2), pages 77-85, June.
  • Handle: RePEc:eee:appene:v:69:y:2001:i:2:p:77-85
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306-2619(01)00007-1
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. He, Jizhou & Xin, Yong & He, Xian, 2007. "Performance optimization of quantum Brayton refrigeration cycle working with spin systems," Applied Energy, Elsevier, vol. 84(2), pages 176-186, February.
    2. He, Jizhou & Chen, Jincan & Hua, Ben, 2002. "Influence of quantum degeneracy on the performance of a Stirling refrigerator working with an ideal Fermi gas," Applied Energy, Elsevier, vol. 72(3-4), pages 541-554, July.
    3. Yang, Yulin & Lin, Bihong & Chen, Jincan, 2006. "Influence of regeneration on the performance of a Brayton refrigeration-cycle working with an ideal Bose-gas," Applied Energy, Elsevier, vol. 83(2), pages 99-112, February.
    4. Zemin Ding & Lingen Chen & Fengrui Sun, 2016. "Heating load and COP optimization of a double resonance energy selective electron (ESE) heat pump," International Journal of Low-Carbon Technologies, Oxford University Press, vol. 11(3), pages 383-392.
    5. Guo, Juncheng & Zhang, Xiuqin & Su, Guozhen & Chen, Jincan, 2012. "The performance analysis of a micro-/nanoscaled quantum heat engine," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(24), pages 6432-6439.
    6. Tu, Youming & Chen, Lingen & Sun, Fengrui & Wu, Chih, 2006. "Cooling load and coefficient of performance optimizations for real air-refrigerators," Applied Energy, Elsevier, vol. 83(12), pages 1289-1306, December.
    7. Zhou, Shengbing & Chen, Lingen & Sun, Fengrui & Wu, Chih, 2004. "Cooling-load density optimization for a regenerated air refrigerator," Applied Energy, Elsevier, vol. 78(3), pages 315-328, July.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:69:y:2001:i:2:p:77-85. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.