IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v72y2002i3-4p541-554.html
   My bibliography  Save this article

Influence of quantum degeneracy on the performance of a Stirling refrigerator working with an ideal Fermi gas

Author

Listed:
  • He, Jizhou
  • Chen, Jincan
  • Hua, Ben

Abstract

The influence of quantum degeneracy on the performance of a Stirling refrigeration cycle is investigated, based on the equation of state of an ideal Fermi gas. The inherent regenerative losses and the coefficient of performance (COP) of the cycle are calculated. It is found that, under the condition of strong gas degeneracy, the COP of the cycle in the first approximation is a function only of the temperatures of the heat reservoirs, while under other conditions, the COPs of the cycle depend on the temperatures of the heat reservoirs and other parameters of the cycle. The results obtained here reveal the general performance characteristics of a Stirling refrigeration cycle having a Fermi gas as its working substance.

Suggested Citation

  • He, Jizhou & Chen, Jincan & Hua, Ben, 2002. "Influence of quantum degeneracy on the performance of a Stirling refrigerator working with an ideal Fermi gas," Applied Energy, Elsevier, vol. 72(3-4), pages 541-554, July.
  • Handle: RePEc:eee:appene:v:72:y:2002:i:3-4:p:541-554
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306-2619(02)00047-8
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Sisman, Altug & Saygin, Hasan, 2001. "The improvement effect of quantum degeneracy on the work from a Carnot cycle," Applied Energy, Elsevier, vol. 68(4), pages 367-376, April.
    2. SaygIn, Hasan & Sisman, Altug, 2001. "Brayton refrigeration cycles working under quantum degeneracy conditions," Applied Energy, Elsevier, vol. 69(2), pages 77-85, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Dalkıran, Alper & Açıkkalp, Emin & Caner, Necmettin, 2016. "Analysis of a quantum irreversible Otto cycle with exergetic sustainable index," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 453(C), pages 316-326.
    2. Açıkkalp, Emin & Caner, Necmettin, 2015. "Determining of the optimum performance of a nano scale irreversible Dual cycle with quantum gases as working fluid by using different methods," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 433(C), pages 247-258.
    3. He, Jizhou & Xin, Yong & He, Xian, 2007. "Performance optimization of quantum Brayton refrigeration cycle working with spin systems," Applied Energy, Elsevier, vol. 84(2), pages 176-186, February.
    4. Wu, Feng & Chen, Lingen & Li, Duanyong & Ding, Guozhong & Zhang, Chunping & Kan, Xuxian, 2009. "Thermodynamic performance on a thermo-acoustic micro-cycle under the condition of weak gas degeneracy," Applied Energy, Elsevier, vol. 86(7-8), pages 1119-1123, July.
    5. Yin, Yong & Chen, Lingen & Wu, Feng & Ge, Yanlin, 2020. "Work output and thermal efficiency of an endoreversible entangled quantum Stirling engine with one dimensional isotropic Heisenberg model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 547(C).
    6. Açıkkalp, Emin & Caner, Necmettin, 2015. "Determining performance of an irreversible nano scale dual cycle operating with Maxwell–Boltzmann gas," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 424(C), pages 342-349.
    7. Ahmadi, Mohammad H. & Ahmadi, Mohammad-Ali & Maleki, Akbar & Pourfayaz, Fathollah & Bidi, Mokhtar & Açıkkalp, Emin, 2017. "Exergetic sustainability evaluation and multi-objective optimization of performance of an irreversible nanoscale Stirling refrigeration cycle operating with Maxwell–Boltzmann gas," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 80-92.
    8. Guo, Juncheng & Zhang, Xiuqin & Su, Guozhen & Chen, Jincan, 2012. "The performance analysis of a micro-/nanoscaled quantum heat engine," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(24), pages 6432-6439.
    9. Yang, Yulin & Lin, Bihong & Chen, Jincan, 2006. "Influence of regeneration on the performance of a Brayton refrigeration-cycle working with an ideal Bose-gas," Applied Energy, Elsevier, vol. 83(2), pages 99-112, February.
    10. Formosa, Fabien & Fréchette, Luc G., 2013. "Scaling laws for free piston Stirling engine design: Benefits and challenges of miniaturization," Energy, Elsevier, vol. 57(C), pages 796-808.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. He, Jizhou & Xin, Yong & He, Xian, 2007. "Performance optimization of quantum Brayton refrigeration cycle working with spin systems," Applied Energy, Elsevier, vol. 84(2), pages 176-186, February.
    2. Ahmadi, Mohammad H. & Amin Nabakhteh, Mohammad & Ahmadi, Mohammad-Ali & Pourfayaz, Fathollah & Bidi, Mokhtar, 2017. "Investigation and optimization of performance of nano-scale Stirling refrigerator using working fluid as Maxwell–Boltzmann gases," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 483(C), pages 337-350.
    3. Zemin Ding & Lingen Chen & Fengrui Sun, 2016. "Heating load and COP optimization of a double resonance energy selective electron (ESE) heat pump," International Journal of Low-Carbon Technologies, Oxford University Press, vol. 11(3), pages 383-392.
    4. Lin, Bihong & Chen, Jincan, 2004. "Performance analysis of a quantum heat-pump using spin systems as the working substance," Applied Energy, Elsevier, vol. 78(1), pages 75-93, May.
    5. Ahmadi, Mohammad H. & Ahmadi, Mohammad-Ali & Maleki, Akbar & Pourfayaz, Fathollah & Bidi, Mokhtar & Açıkkalp, Emin, 2017. "Exergetic sustainability evaluation and multi-objective optimization of performance of an irreversible nanoscale Stirling refrigeration cycle operating with Maxwell–Boltzmann gas," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 80-92.
    6. Zhou, Shengbing & Chen, Lingen & Sun, Fengrui & Wu, Chih, 2004. "Cooling-load density optimization for a regenerated air refrigerator," Applied Energy, Elsevier, vol. 78(3), pages 315-328, July.
    7. Yang, Yulin & Lin, Bihong & Chen, Jincan, 2006. "Influence of regeneration on the performance of a Brayton refrigeration-cycle working with an ideal Bose-gas," Applied Energy, Elsevier, vol. 83(2), pages 99-112, February.
    8. Tu, Youming & Chen, Lingen & Sun, Fengrui & Wu, Chih, 2006. "Cooling load and coefficient of performance optimizations for real air-refrigerators," Applied Energy, Elsevier, vol. 83(12), pages 1289-1306, December.
    9. Dalkıran, Alper & Açıkkalp, Emin & Caner, Necmettin, 2016. "Analysis of a quantum irreversible Otto cycle with exergetic sustainable index," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 453(C), pages 316-326.
    10. Guo, Juncheng & Zhang, Xiuqin & Su, Guozhen & Chen, Jincan, 2012. "The performance analysis of a micro-/nanoscaled quantum heat engine," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(24), pages 6432-6439.
    11. Açıkkalp, Emin & Caner, Necmettin, 2015. "Determining of the optimum performance of a nano scale irreversible Dual cycle with quantum gases as working fluid by using different methods," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 433(C), pages 247-258.
    12. Açıkkalp, Emin & Caner, Necmettin, 2015. "Determining performance of an irreversible nano scale dual cycle operating with Maxwell–Boltzmann gas," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 424(C), pages 342-349.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:72:y:2002:i:3-4:p:541-554. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.