IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v78y2004i3p315-328.html
   My bibliography  Save this article

Cooling-load density optimization for a regenerated air refrigerator

Author

Listed:
  • Zhou, Shengbing
  • Chen, Lingen
  • Sun, Fengrui
  • Wu, Chih

Abstract

A performance analysis and optimization of a regenerated air refrigeration cycle with variable-temperature heat-reservoirs is carried out by taking the cooling-load density, i.e., the ratio of cooling load to the maximum specific volume in the cycle, as the optimization objective using finite-time thermodynamics (FTT) or entropy-generation minimization (EGM). The model of a regenerated air refrigerator is presented, and analytical relationships between cooling-load density and pressure ratio, as well as between coefficient of performance (COP) and pressure ratio are derived. The irreversibilities considered in the analysis include the heat-transfer losses in the hot- and cold-side heat-exchangers and the regenerator, the non-isentropic compression and expansion losses in the compressor and expander, and the pressure-drop losses in the piping. The cycle performance comparison under maximum cooling-load density and maximum cooling-load conditions is performed via detailed numerical calculations. The optimal performance characteristics of the cycle are obtained by optimizing the pressure ratio of the compressor, and searching for the optimum distribution of heat-conductances of the hot- and cold-side heat-exchangers and regenerator for the fixed total heat-exchanger inventory. The effect of heat capacity rate matching between the working fluid and heat reservoirs on the cooling-load density is analyzed for the cycle. The influences of the effectiveness of the regenerator as well as the hot- and cold-side heat-exchangers, the efficiencies of the expander and the compressor, the pressure-recovery coefficient, and the temperature ratio of the heat reservoirs on the cooling-load density and COP are examined and illustrated by numerical examples.

Suggested Citation

  • Zhou, Shengbing & Chen, Lingen & Sun, Fengrui & Wu, Chih, 2004. "Cooling-load density optimization for a regenerated air refrigerator," Applied Energy, Elsevier, vol. 78(3), pages 315-328, July.
  • Handle: RePEc:eee:appene:v:78:y:2004:i:3:p:315-328
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306-2619(03)00181-8
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. SaygIn, Hasan & Sisman, Altug, 2001. "Brayton refrigeration cycles working under quantum degeneracy conditions," Applied Energy, Elsevier, vol. 69(2), pages 77-85, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bi, Yuehong & Chen, Lingen & Sun, Fengrui, 2008. "Heating load, heating-load density and COP optimizations of an endoreversible air heat-pump," Applied Energy, Elsevier, vol. 85(7), pages 607-617, July.
    2. Tu, Youming & Chen, Lingen & Sun, Fengrui & Wu, Chih, 2006. "Cooling load and coefficient of performance optimizations for real air-refrigerators," Applied Energy, Elsevier, vol. 83(12), pages 1289-1306, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. He, Jizhou & Chen, Jincan & Hua, Ben, 2002. "Influence of quantum degeneracy on the performance of a Stirling refrigerator working with an ideal Fermi gas," Applied Energy, Elsevier, vol. 72(3-4), pages 541-554, July.
    2. Yang, Yulin & Lin, Bihong & Chen, Jincan, 2006. "Influence of regeneration on the performance of a Brayton refrigeration-cycle working with an ideal Bose-gas," Applied Energy, Elsevier, vol. 83(2), pages 99-112, February.
    3. He, Jizhou & Xin, Yong & He, Xian, 2007. "Performance optimization of quantum Brayton refrigeration cycle working with spin systems," Applied Energy, Elsevier, vol. 84(2), pages 176-186, February.
    4. Guo, Juncheng & Zhang, Xiuqin & Su, Guozhen & Chen, Jincan, 2012. "The performance analysis of a micro-/nanoscaled quantum heat engine," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(24), pages 6432-6439.
    5. Zemin Ding & Lingen Chen & Fengrui Sun, 2016. "Heating load and COP optimization of a double resonance energy selective electron (ESE) heat pump," International Journal of Low-Carbon Technologies, Oxford University Press, vol. 11(3), pages 383-392.
    6. Tu, Youming & Chen, Lingen & Sun, Fengrui & Wu, Chih, 2006. "Cooling load and coefficient of performance optimizations for real air-refrigerators," Applied Energy, Elsevier, vol. 83(12), pages 1289-1306, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:78:y:2004:i:3:p:315-328. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.