IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v66y2000i3p199-211.html
   My bibliography  Save this article

Forced convection and pressure drop in a horizontal triangular-sectional duct with V-grooved (i.e. orthogonal to the mean flow) inner surfaces

Author

Listed:
  • Leung, C. W.
  • Chen, S.
  • Wong, T. T.
  • Probert, S. D.

Abstract

An experimental investigation has been performed to study the forced convection and pressure-drop characteristics fully-developed steady turbulent flows in air-cooled, horizontal, equilateral-triangular ducts. These ducts were constructed of duralumin, each of the same axial length and hydraulic diameter. The inner surfaces of each duct were either plane or machined with uniformly-spaced parallel, identical V-grooves. For each tested duct, these grooves had a depth of 1 mm, but were all of the same apex angle, [theta], where 0[less-than-or-equals, slant][theta]

Suggested Citation

  • Leung, C. W. & Chen, S. & Wong, T. T. & Probert, S. D., 2000. "Forced convection and pressure drop in a horizontal triangular-sectional duct with V-grooved (i.e. orthogonal to the mean flow) inner surfaces," Applied Energy, Elsevier, vol. 66(3), pages 199-211, July.
  • Handle: RePEc:eee:appene:v:66:y:2000:i:3:p:199-211
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306-2619(99)00130-0
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Leung, C. W. & Probert, S. D., 1997. "Forced-convective turbulent-flows through horizontal ducts with isosceles-triangular internal cross-sections," Applied Energy, Elsevier, vol. 57(1), pages 13-24, May.
    2. Leung, C. W. & Chan, T. L. & Probert, S. D. & Kang, H. J., 1999. "Forced convection from a horizontal ribbed rectangular base-plate penetrated by arrays of holes," Applied Energy, Elsevier, vol. 62(2), pages 81-95, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kumar, Rajneesh & Varun, & Kumar, Anoop, 2016. "Thermal and fluid dynamic characteristics of flow through triangular cross-sectional duct: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 61(C), pages 123-140.
    2. Nidhul, Kottayat & Kumar, Sachin & Yadav, Ajay Kumar & Anish, S., 2020. "Enhanced thermo-hydraulic performance in a V-ribbed triangular duct solar air heater: CFD and exergy analysis," Energy, Elsevier, vol. 200(C).
    3. Ma, Ting & Wang, Qiu-wang & Zeng, Min & Chen, Yi-tung & Liu, Yang & Nagarajan, Vijaisri, 2012. "Study on heat transfer and pressure drop performances of ribbed channel in the high temperature heat exchanger," Applied Energy, Elsevier, vol. 99(C), pages 393-401.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ma, Ting & Wang, Qiu-wang & Zeng, Min & Chen, Yi-tung & Liu, Yang & Nagarajan, Vijaisri, 2012. "Study on heat transfer and pressure drop performances of ribbed channel in the high temperature heat exchanger," Applied Energy, Elsevier, vol. 99(C), pages 393-401.
    2. Nidhul, Kottayat & Kumar, Sachin & Yadav, Ajay Kumar & Anish, S., 2020. "Enhanced thermo-hydraulic performance in a V-ribbed triangular duct solar air heater: CFD and exergy analysis," Energy, Elsevier, vol. 200(C).
    3. Kumar, Rajneesh & Varun, & Kumar, Anoop, 2016. "Thermal and fluid dynamic characteristics of flow through triangular cross-sectional duct: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 61(C), pages 123-140.
    4. Leung, C. W. & Wong, T. T. & Probert, S. D., 2001. "Enhanced forced-convection from ribbed or machine-roughened inner surfaces within triangular ducts," Applied Energy, Elsevier, vol. 69(2), pages 87-99, June.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:66:y:2000:i:3:p:199-211. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.