IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v62y1999i2p67-79.html
   My bibliography  Save this article

Optimal performance of an irreversible, heat engine-driven, combined vapor compression and absorption refrigerator

Author

Listed:
  • Göktun, Selahattin

Abstract

By employing finite-time thermodynamic approach, the optimum performance of an irreversible heat engine-driven combined vapor compression and absorption refrigerator system is investigated. To get closer to real machines, the effects of thermal resistances and internal irreversibilities on the performance of the combined cycle is considered. The analysis show that the combined cycle has a significant increase in system performance over the heat engine-driven vapor-compression refrigerators.

Suggested Citation

  • Göktun, Selahattin, 1999. "Optimal performance of an irreversible, heat engine-driven, combined vapor compression and absorption refrigerator," Applied Energy, Elsevier, vol. 62(2), pages 67-79, February.
  • Handle: RePEc:eee:appene:v:62:y:1999:i:2:p:67-79
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306-2619(98)00045-2
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Chen, Lingen & Sun, Fengrui & Chen, Wenzhen, 1995. "Optimization of the specific rate of refrigeration in combined refrigeration cycles," Energy, Elsevier, vol. 20(10), pages 1049-1053.
    2. Chen, Jincan, 1995. "The equivalent cycle system of an endoreversible absorption refrigerator and its general performance characteristics," Energy, Elsevier, vol. 20(10), pages 995-1003.
    3. Wu, Chih & Kiang, Robert L., 1992. "Finite-time thermodynamic analysis of a Carnot engine with internal irreversibility," Energy, Elsevier, vol. 17(12), pages 1173-1178.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xu, Yun-Chao & Chen, Qun, 2013. "A theoretical global optimization method for vapor-compression refrigeration systems based on entransy theory," Energy, Elsevier, vol. 60(C), pages 464-473.
    2. Su, Guozhen & Zhang, Yanchao & Cai, Ling & Su, Shanhe & Chen, Jincan, 2015. "Conceptual design and simulation investigation of an electronic cooling device powered by hot electrons," Energy, Elsevier, vol. 90(P2), pages 1842-1847.
    3. Ngouateu Wouagfack, Paiguy Armand & Tchinda, Réné, 2013. "Finite-time thermodynamics optimization of absorption refrigeration systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 21(C), pages 524-536.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xia, Shaojun & Chen, Lingen & Sun, Fengrui, 2011. "Power-optimization of non-ideal energy converters under generalized convective heat transfer law via Hamilton-Jacobi-Bellman theory," Energy, Elsevier, vol. 36(1), pages 633-646.
    2. Zhou, Shengbing & Chen, Lingen & Sun, Fengrui & Wu, Chih, 2005. "Optimal performance of a generalized irreversible Carnot-engine," Applied Energy, Elsevier, vol. 81(4), pages 376-387, August.
    3. Chen, Lingen & Qi, Congzheng & Ge, Yanlin & Feng, Huijun, 2022. "Thermal Brownian heat engine with external and internal irreversibilities," Energy, Elsevier, vol. 255(C).
    4. Chen, Lingen & Sun, Fengrui & Wu, Chih, 2004. "Maximum-profit performance for generalized irreversible Carnot-engines," Applied Energy, Elsevier, vol. 79(1), pages 15-25, September.
    5. Qin, Xiaoyong & Chen, Lingen & Sun, Fengrui & Wu, Chih, 2005. "Thermo-economic optimization of an endoreversible four-heat-reservoir absorption-refrigerator," Applied Energy, Elsevier, vol. 81(4), pages 420-433, August.
    6. Wu, Suzhi & Chen, Jincan, 2005. "Parametric optimum design of an irreversible heat-transformer based on the thermo-economic approach," Applied Energy, Elsevier, vol. 80(4), pages 349-365, April.
    7. Ngouateu Wouagfack, Paiguy Armand & Tchinda, Réné, 2013. "Finite-time thermodynamics optimization of absorption refrigeration systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 21(C), pages 524-536.
    8. Chen, Lingen & Zhu, Xiaoqin & Sun, Fengrui & Wu, Chih, 2006. "Exergy-based ecological optimization of linear phenomenological heat-transfer law irreversible Carnot-engines," Applied Energy, Elsevier, vol. 83(6), pages 573-582, June.
    9. Chen, Lingen & Li, Jun & Sun, Fengrui, 2008. "Generalized irreversible heat-engine experiencing a complex heat-transfer law," Applied Energy, Elsevier, vol. 85(1), pages 52-60, January.
    10. Chen, Xiaohang & Wang, Yuan & Zhao, Yingru & Zhou, Yinghui, 2016. "A study of double functions and load matching of a phosphoric acid fuel cell/heat-driven refrigerator hybrid system," Energy, Elsevier, vol. 101(C), pages 359-365.
    11. Göktun, Selahattin & Er, I. Deha, 2000. "Optimum performance of irreversible cascaded and double effect absorption refrigerators," Applied Energy, Elsevier, vol. 67(3), pages 265-279, November.
    12. Chen, Lingen & Ding, Zemin & Sun, Fengrui, 2011. "Model of a total momentum filtered energy selective electron heat pump affected by heat leakage and its performance characteristics," Energy, Elsevier, vol. 36(7), pages 4011-4018.
    13. Lee, Won-Yong & Kim, Minjin & Sohn, Young-Jun & Kim, Seung-Gon, 2017. "Performance of a hybrid system consisting of a high-temperature polymer electrolyte fuel cell and an absorption refrigerator," Energy, Elsevier, vol. 141(C), pages 2397-2407.
    14. Ares de Parga-Regalado, A.M. & Valencia-Ortega, G. & Barranco-Jiménez, M.A., 2023. "Thermo-economic optimization of irreversible Novikov power plant models including a proposal of dissipation cost," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 613(C).
    15. Meng, Fankai & Chen, Lingen & Sun, Fengrui, 2011. "A numerical model and comparative investigation of a thermoelectric generator with multi-irreversibilities," Energy, Elsevier, vol. 36(5), pages 3513-3522.
    16. Du, Jianying & Fu, Tong & Hu, Cong & Su, Shanhe & Chen, Jincan, 2020. "Entropy analyses of electronic devices with different energy selective electron tunnels," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 560(C).
    17. Chen, Lingen & Zhou, Jianping & Sun, Fengrui & Wu, Chih, 2004. "Ecological optimization for generalized irreversible Carnot engines," Applied Energy, Elsevier, vol. 77(3), pages 327-338, March.
    18. Valencia-Ortega, G. & Levario-Medina, S. & Angulo-Brown, F. & Barranco-Jiménez, M.A., 2023. "Energetic optimization and local stability of heliothermal plant models under three thermo-economic performance regimes," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 613(C).
    19. Erbay, L. Berrin & Yavuz, Hasbi, 1999. "Analysis of an irreversible Ericsson engine with a realistic regenerator," Applied Energy, Elsevier, vol. 62(3), pages 155-167, March.
    20. Chen, Lingen & Sun, Fengrui & Wu, Chih, 2004. "Optimal allocation of heat-exchanger area for refrigeration and air-conditioning plants," Applied Energy, Elsevier, vol. 77(3), pages 339-354, March.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:62:y:1999:i:2:p:67-79. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.