IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v81y2005i4p376-387.html
   My bibliography  Save this article

Optimal performance of a generalized irreversible Carnot-engine

Author

Listed:
  • Zhou, Shengbing
  • Chen, Lingen
  • Sun, Fengrui
  • Wu, Chih

Abstract

This paper presents a generalized irreversible Carnot-engine model that incorporates several internal and external irreversibilities, such as heat-resistance, bypass heat-leak, friction and turbulence. The added irreversibilities besides heat-resistance are characterized by a constant parameter and a constant coefficient. The relation between optimal power-output and efficiency is derived based on a generalized heat-transfer law q [is proportional to] ([Delta]T)n. Detailed numerical examples show the effect of bypass heat-leakage, internal irreversibility and heat-transfer law on the optimal performance of the generalized irreversible heat-engine.

Suggested Citation

  • Zhou, Shengbing & Chen, Lingen & Sun, Fengrui & Wu, Chih, 2005. "Optimal performance of a generalized irreversible Carnot-engine," Applied Energy, Elsevier, vol. 81(4), pages 376-387, August.
  • Handle: RePEc:eee:appene:v:81:y:2005:i:4:p:376-387
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306-2619(04)00128-X
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wu, Chih & Kiang, Robert L., 1992. "Finite-time thermodynamic analysis of a Carnot engine with internal irreversibility," Energy, Elsevier, vol. 17(12), pages 1173-1178.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xia, Shaojun & Chen, Lingen & Sun, Fengrui, 2011. "Power-optimization of non-ideal energy converters under generalized convective heat transfer law via Hamilton-Jacobi-Bellman theory," Energy, Elsevier, vol. 36(1), pages 633-646.
    2. Chieh-Li Chen & Chia-En Ho & Her-Terng Yau, 2012. "Performance Analysis and Optimization of a Solar Powered Stirling Engine with Heat Transfer Considerations," Energies, MDPI, vol. 5(9), pages 1-13, September.
    3. Chen, Lingen & Li, Jun & Sun, Fengrui, 2008. "Generalized irreversible heat-engine experiencing a complex heat-transfer law," Applied Energy, Elsevier, vol. 85(1), pages 52-60, January.
    4. Zhou, Junle & Chen, Lingen & Ding, Zemin & Sun, Fengrui, 2016. "Analysis and optimization with ecological objective function of irreversible single resonance energy selective electron heat engines," Energy, Elsevier, vol. 111(C), pages 306-312.
    5. Lingen Chen & Kang Ma & Huijun Feng & Yanlin Ge, 2020. "Optimal Configuration of a Gas Expansion Process in a Piston-Type Cylinder with Generalized Convective Heat Transfer Law," Energies, MDPI, vol. 13(12), pages 1-20, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chen, Lingen & Sun, Fengrui & Wu, Chih, 2004. "Maximum-profit performance for generalized irreversible Carnot-engines," Applied Energy, Elsevier, vol. 79(1), pages 15-25, September.
    2. Chen, Lingen & Li, Jun & Sun, Fengrui, 2008. "Generalized irreversible heat-engine experiencing a complex heat-transfer law," Applied Energy, Elsevier, vol. 85(1), pages 52-60, January.
    3. Xia, Shaojun & Chen, Lingen & Sun, Fengrui, 2011. "Power-optimization of non-ideal energy converters under generalized convective heat transfer law via Hamilton-Jacobi-Bellman theory," Energy, Elsevier, vol. 36(1), pages 633-646.
    4. Ares de Parga-Regalado, A.M. & Valencia-Ortega, G. & Barranco-Jiménez, M.A., 2023. "Thermo-economic optimization of irreversible Novikov power plant models including a proposal of dissipation cost," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 613(C).
    5. Chen, Lingen & Zhou, Jianping & Sun, Fengrui & Wu, Chih, 2004. "Ecological optimization for generalized irreversible Carnot engines," Applied Energy, Elsevier, vol. 77(3), pages 327-338, March.
    6. Valencia-Ortega, G. & Levario-Medina, S. & Angulo-Brown, F. & Barranco-Jiménez, M.A., 2023. "Energetic optimization and local stability of heliothermal plant models under three thermo-economic performance regimes," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 613(C).
    7. Long, Rui & Li, Baode & Liu, Zhichun & Liu, Wei, 2016. "Ecological analysis of a thermally regenerative electrochemical cycle," Energy, Elsevier, vol. 107(C), pages 95-102.
    8. Göktun, Selahattin, 1999. "Optimal performance of an irreversible, heat engine-driven, combined vapor compression and absorption refrigerator," Applied Energy, Elsevier, vol. 62(2), pages 67-79, February.
    9. Reyes-Ramírez, Israel & Barranco-Jiménez, Marco A. & Rojas-Pacheco, A. & Guzmán-Vargas, Lev, 2014. "Global stability analysis of a Curzon–Ahlborn heat engine using the Lyapunov method," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 399(C), pages 98-105.
    10. Chen, Lingen & Qi, Congzheng & Ge, Yanlin & Feng, Huijun, 2022. "Thermal Brownian heat engine with external and internal irreversibilities," Energy, Elsevier, vol. 255(C).
    11. Wu, Suzhi & Chen, Jincan, 2005. "Parametric optimum design of an irreversible heat-transformer based on the thermo-economic approach," Applied Energy, Elsevier, vol. 80(4), pages 349-365, April.
    12. Chen, Lingen & Zhu, Xiaoqin & Sun, Fengrui & Wu, Chih, 2006. "Exergy-based ecological optimization of linear phenomenological heat-transfer law irreversible Carnot-engines," Applied Energy, Elsevier, vol. 83(6), pages 573-582, June.
    13. Erbay, L. Berrin & Yavuz, Hasbi, 1999. "Analysis of an irreversible Ericsson engine with a realistic regenerator," Applied Energy, Elsevier, vol. 62(3), pages 155-167, March.
    14. Long, Rui & Liu, Wei, 2016. "Ecological optimization and coefficient of performance bounds of general refrigerators," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 443(C), pages 14-21.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:81:y:2005:i:4:p:376-387. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.