IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v81y2005i4p420-433.html
   My bibliography  Save this article

Thermo-economic optimization of an endoreversible four-heat-reservoir absorption-refrigerator

Author

Listed:
  • Qin, Xiaoyong
  • Chen, Lingen
  • Sun, Fengrui
  • Wu, Chih

Abstract

Based on an endoreversible four-heat-reservoir absorption-refrigeration-cycle model, the optimal thermo-economic performance of an absorption-refrigerator is analyzed and optimized assuming a linear (Newtonian) heat-transfer law applies. The optimal relation between the thermo-economic criterion and the coefficient of performance (COP), the maximum thermo-economic criterion, and the COP and specific cooling load for the maximum thermo-economic criterion of the cycle are derived using finite-time thermodynamics. Moreover, the effects of the cycle parameters on the thermo-economic performance of the cycle are studied by numerical examples.

Suggested Citation

  • Qin, Xiaoyong & Chen, Lingen & Sun, Fengrui & Wu, Chih, 2005. "Thermo-economic optimization of an endoreversible four-heat-reservoir absorption-refrigerator," Applied Energy, Elsevier, vol. 81(4), pages 420-433, August.
  • Handle: RePEc:eee:appene:v:81:y:2005:i:4:p:420-433
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306-2619(04)00134-5
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zheng, Tong & Chen, Lingen & Sun, Fengrui & Wu, Chih, 2003. "Performance optimization of an irreversible four-heat-reservoir absorption refrigerator," Applied Energy, Elsevier, vol. 76(4), pages 391-414, December.
    2. Göktun, Selahattin, 1997. "Optimal performance of an irreversible refrigerator With three heat sources (IRWTHS)," Energy, Elsevier, vol. 22(1), pages 27-31.
    3. Chen, Jincan, 1995. "The equivalent cycle system of an endoreversible absorption refrigerator and its general performance characteristics," Energy, Elsevier, vol. 20(10), pages 995-1003.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Marco A. Barranco-Jiménez & Israel Ramos-Gayosso & Marco A. Rosales & Fernando Angulo-Brown, 2009. "A Proposal of Ecologic Taxes Based on Thermo-Economic Performance of Heat Engine Models," Energies, MDPI, vol. 2(4), pages 1-15, November.
    2. Ngouateu Wouagfack, Paiguy Armand & Tchinda, Réné, 2013. "Finite-time thermodynamics optimization of absorption refrigeration systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 21(C), pages 524-536.
    3. Ahmadi, Mohammad Hossein & Ahmadi, Mohammad Ali, 2016. "Multi objective optimization of performance of three-heat-source irreversible refrigerators based algorithm NSGAII," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 784-794.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ngouateu Wouagfack, Paiguy Armand & Tchinda, Réné, 2013. "Finite-time thermodynamics optimization of absorption refrigeration systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 21(C), pages 524-536.
    2. Chen, Xiaohang & Wang, Yuan & Zhao, Yingru & Zhou, Yinghui, 2016. "A study of double functions and load matching of a phosphoric acid fuel cell/heat-driven refrigerator hybrid system," Energy, Elsevier, vol. 101(C), pages 359-365.
    3. Ahmadi, Mohammad Hossein & Ahmadi, Mohammad Ali, 2016. "Multi objective optimization of performance of three-heat-source irreversible refrigerators based algorithm NSGAII," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 784-794.
    4. Göktun, Selahattin & Er, I. Deha, 2000. "Optimum performance of irreversible cascaded and double effect absorption refrigerators," Applied Energy, Elsevier, vol. 67(3), pages 265-279, November.
    5. Lee, Won-Yong & Kim, Minjin & Sohn, Young-Jun & Kim, Seung-Gon, 2017. "Performance of a hybrid system consisting of a high-temperature polymer electrolyte fuel cell and an absorption refrigerator," Energy, Elsevier, vol. 141(C), pages 2397-2407.
    6. Hamed, Mouna & Fellah, Ali & Ben Brahim, Ammar, 2012. "Optimization of a solar driven absorption refrigerator in the transient regime," Applied Energy, Elsevier, vol. 92(C), pages 714-724.
    7. Du, Jianying & Fu, Tong & Hu, Cong & Su, Shanhe & Chen, Jincan, 2020. "Entropy analyses of electronic devices with different energy selective electron tunnels," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 560(C).
    8. Su, Guozhen & Pan, Yuzhuo & Zhang, Yanchao & Shih, Tien-Mo & Chen, Jincan, 2016. "An electronic cooling device with multiple energy selective tunnels," Energy, Elsevier, vol. 113(C), pages 723-727.
    9. Su, Guozhen & Zhang, Yanchao & Cai, Ling & Su, Shanhe & Chen, Jincan, 2015. "Conceptual design and simulation investigation of an electronic cooling device powered by hot electrons," Energy, Elsevier, vol. 90(P2), pages 1842-1847.
    10. Zheng, Tong & Chen, Lingen & Sun, Fengrui & Wu, Chih, 2003. "Performance optimization of an irreversible four-heat-reservoir absorption refrigerator," Applied Energy, Elsevier, vol. 76(4), pages 391-414, December.
    11. Göktun, Selahattin, 1999. "Optimal performance of an irreversible, heat engine-driven, combined vapor compression and absorption refrigerator," Applied Energy, Elsevier, vol. 62(2), pages 67-79, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:81:y:2005:i:4:p:420-433. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.