Application of machine learning to evaluating and remediating models for energy and environmental engineering
Author
Abstract
Suggested Citation
DOI: 10.1016/j.apenergy.2022.119286
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Khosravi, A. & Machado, L. & Nunes, R.O., 2018. "Time-series prediction of wind speed using machine learning algorithms: A case study Osorio wind farm, Brazil," Applied Energy, Elsevier, vol. 224(C), pages 550-566.
- Lou, Siwei & Li, Danny H.W. & Lam, Joseph C. & Chan, Wilco W.H., 2016. "Prediction of diffuse solar irradiance using machine learning and multivariable regression," Applied Energy, Elsevier, vol. 181(C), pages 367-374.
- Deo, Ravinesh C. & Wen, Xiaohu & Qi, Feng, 2016. "A wavelet-coupled support vector machine model for forecasting global incident solar radiation using limited meteorological dataset," Applied Energy, Elsevier, vol. 168(C), pages 568-593.
- Gassar, Abdo Abdullah Ahmed & Cha, Seung Hyun, 2021. "Review of geographic information systems-based rooftop solar photovoltaic potential estimation approaches at urban scales," Applied Energy, Elsevier, vol. 291(C).
- Wang, Zhangyuan & Zhao, Xudong & Han, Zhonghe & Luo, Liang & Xiang, Jinwei & Zheng, Senglin & Liu, Guangming & Yu, Min & Cui, Yu & Shittu, Samson & Hu, Menglong, 2021. "Advanced big-data/machine-learning techniques for optimization and performance enhancement of the heat pipe technology – A review and prospective study," Applied Energy, Elsevier, vol. 294(C).
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Mkono, Christopher N. & Chuanbo, Shen & Mulashani, Alvin K. & Mwakipunda, Grant Charles, 2023. "Deep learning integrated approach for hydrocarbon source rock evaluation and geochemical indicators prediction in the Jurassic - Paleogene of the Mandawa basin, SE Tanzania," Energy, Elsevier, vol. 284(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Zhao, Haitao & Ezeh, Collins I. & Ren, Weijia & Li, Wentao & Pang, Cheng Heng & Zheng, Chenghang & Gao, Xiang & Wu, Tao, 2019. "Integration of machine learning approaches for accelerated discovery of transition-metal dichalcogenides as Hg0 sensing materials," Applied Energy, Elsevier, vol. 254(C).
- Salcedo-Sanz, Sancho & Deo, Ravinesh C. & Cornejo-Bueno, Laura & Camacho-Gómez, Carlos & Ghimire, Sujan, 2018. "An efficient neuro-evolutionary hybrid modelling mechanism for the estimation of daily global solar radiation in the Sunshine State of Australia," Applied Energy, Elsevier, vol. 209(C), pages 79-94.
- Li, Shuai & Ma, Hongjie & Li, Weiyi, 2017. "Typical solar radiation year construction using k-means clustering and discrete-time Markov chain," Applied Energy, Elsevier, vol. 205(C), pages 720-731.
- Li, Qian & Wu, Zhou & Xia, Xiaohua, 2018. "Estimate and characterize PV power at demand-side hybrid system," Applied Energy, Elsevier, vol. 218(C), pages 66-77.
- Zang, Haixiang & Cheng, Lilin & Ding, Tao & Cheung, Kwok W. & Wang, Miaomiao & Wei, Zhinong & Sun, Guoqiang, 2019. "Estimation and validation of daily global solar radiation by day of the year-based models for different climates in China," Renewable Energy, Elsevier, vol. 135(C), pages 984-1003.
- Mohammad Rezaie-Balf & Niloofar Maleki & Sungwon Kim & Ali Ashrafian & Fatemeh Babaie-Miri & Nam Won Kim & Il-Moon Chung & Sina Alaghmand, 2019. "Forecasting Daily Solar Radiation Using CEEMDAN Decomposition-Based MARS Model Trained by Crow Search Algorithm," Energies, MDPI, vol. 12(8), pages 1-23, April.
- Gupta, Priya & Singh, Rhythm, 2023. "Combining a deep learning model with multivariate empirical mode decomposition for hourly global horizontal irradiance forecasting," Renewable Energy, Elsevier, vol. 206(C), pages 908-927.
- Ali, Mumtaz & Prasad, Ramendra & Xiang, Yong & Deo, Ravinesh C., 2020. "Near real-time significant wave height forecasting with hybridized multiple linear regression algorithms," Renewable and Sustainable Energy Reviews, Elsevier, vol. 132(C).
- Liu, Xiaolei & Lin, Zi & Feng, Ziming, 2021. "Short-term offshore wind speed forecast by seasonal ARIMA - A comparison against GRU and LSTM," Energy, Elsevier, vol. 227(C).
- Lim, Juin Yau & Safder, Usman & How, Bing Shen & Ifaei, Pouya & Yoo, Chang Kyoo, 2021. "Nationwide sustainable renewable energy and Power-to-X deployment planning in South Korea assisted with forecasting model," Applied Energy, Elsevier, vol. 283(C).
- Jamil, Basharat & Akhtar, Naiem, 2017. "Comparison of empirical models to estimate monthly mean diffuse solar radiation from measured data: Case study for humid-subtropical climatic region of India," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 1326-1342.
- Ping-Huan Kuo & Chiou-Jye Huang, 2018. "A Green Energy Application in Energy Management Systems by an Artificial Intelligence-Based Solar Radiation Forecasting Model," Energies, MDPI, vol. 11(4), pages 1-15, April.
- Dong, Zhen & Li, Zhongguo & Liang, Zhongchao & Xu, Yiqiao & Ding, Zhengtao, 2021. "Distributed neural network enhanced power generation strategy of large-scale wind power plant for power expansion," Applied Energy, Elsevier, vol. 303(C).
- Lou, Siwei & Li, Danny H.W. & Lam, Joseph C., 2017. "CIE Standard Sky classification by accessible climatic indices," Renewable Energy, Elsevier, vol. 113(C), pages 347-356.
- Àlex Alonso & Jordi de la Hoz & Helena Martín & Sergio Coronas & Pep Salas & José Matas, 2020. "A Comprehensive Model for the Design of a Microgrid under Regulatory Constraints Using Synthetical Data Generation and Stochastic Optimization," Energies, MDPI, vol. 13(21), pages 1-26, October.
- Aurelia Rybak & Aleksandra Rybak & Spas D. Kolev, 2023. "Modeling the Photovoltaic Power Generation in Poland in the Light of PEP2040: An Application of Multiple Regression," Energies, MDPI, vol. 16(22), pages 1-17, November.
- Jiang, Hou & Zhang, Xiaotong & Yao, Ling & Lu, Ning & Qin, Jun & Liu, Tang & Zhou, Chenghu, 2023. "High-resolution analysis of rooftop photovoltaic potential based on hourly generation simulations and load profiles," Applied Energy, Elsevier, vol. 348(C).
- Nourani, Vahid & Sharghi, Elnaz & Behfar, Nazanin & Zhang, Yongqiang, 2022. "Multi-step-ahead solar irradiance modeling employing multi-frequency deep learning models and climatic data," Applied Energy, Elsevier, vol. 315(C).
- Costa, Marcelo Azevedo & Ruiz-Cárdenas, Ramiro & Mineti, Leandro Brioschi & Prates, Marcos Oliveira, 2021. "Dynamic time scan forecasting for multi-step wind speed prediction," Renewable Energy, Elsevier, vol. 177(C), pages 584-595.
- Li, Danny H.W. & Lou, Siwei, 2018. "Review of solar irradiance and daylight illuminance modeling and sky classification," Renewable Energy, Elsevier, vol. 126(C), pages 445-453.
More about this item
Keywords
Energy and environmental engineering; Machine learning; Minimum miscible pressure; Model validation;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:320:y:2022:i:c:s0306261922006420. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.