IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v378y2025ipas0306261924022086.html
   My bibliography  Save this article

Investigating the effects of cooperative transmission expansion planning on grid performance during heat waves with varying spatial scales

Author

Listed:
  • Akdemir, Kerem Ziya
  • Mongird, Kendall
  • Kern, Jordan D.
  • Oikonomou, Konstantinos
  • Voisin, Nathalie
  • Burleyson, Casey D.
  • Rice, Jennie S.
  • Zhao, Mengqi
  • Bracken, Cameron
  • Vernon, Chris

Abstract

There is growing recognition of the advantages of interregional transmission capacity to decarbonize electricity grids. A less explored benefit is potential performance improvements during extreme weather events. This study examines the impacts of cooperative transmission expansion planning using an advanced modeling chain to simulate power grid operations of the United States Western Interconnection in 2019 and 2059 under different levels of collaboration between transmission planning regions. Two historical heat waves in 2019 with varying geographical coverage are replayed under future climate change in 2059 to assess the transmission cooperation benefits during grid stress. The results show that cooperative transmission planning yields the best outcomes in terms of reducing wholesale electricity prices and minimizing energy outages both for the whole interconnection and individual transmission planning regions. Compared to individual planning, cooperative planning reduces wholesale electricity prices by 64.3 % and interconnection-wide total costs (transmission investments + grid operations) by 34.6 % in 2059. It also helps decrease greenhouse gas emissions by increasing renewable energy utilization. However, the benefits of cooperation diminish during the widespread heat wave when all regions face extreme electricity demand due to higher space cooling needs. Despite this, cooperative transmission planning remains advantageous, particularly for California Independent System Operator with significant diurnal solar generation capacity. This study suggests that cooperation in transmission planning is crucial for reducing costs and increasing reliability both during normal periods and extreme weather events. It highlights the importance of optimizing the strategic investments to mitigate challenges posed by wider-scale extreme weather events of the future.

Suggested Citation

  • Akdemir, Kerem Ziya & Mongird, Kendall & Kern, Jordan D. & Oikonomou, Konstantinos & Voisin, Nathalie & Burleyson, Casey D. & Rice, Jennie S. & Zhao, Mengqi & Bracken, Cameron & Vernon, Chris, 2025. "Investigating the effects of cooperative transmission expansion planning on grid performance during heat waves with varying spatial scales," Applied Energy, Elsevier, vol. 378(PA).
  • Handle: RePEc:eee:appene:v:378:y:2025:i:pa:s0306261924022086
    DOI: 10.1016/j.apenergy.2024.124825
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261924022086
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2024.124825?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hemmati, Reza & Hooshmand, Rahmat-Allah & Khodabakhshian, Amin, 2013. "State-of-the-art of transmission expansion planning: Comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 23(C), pages 312-319.
    2. Kasina, Saamrat & Hobbs, Benjamin F., 2020. "The value of cooperation in interregional transmission planning: A noncooperative equilibrium model approach," European Journal of Operational Research, Elsevier, vol. 285(2), pages 740-752.
    3. Gacitua, L. & Gallegos, P. & Henriquez-Auba, R. & Lorca, Á. & Negrete-Pincetic, M. & Olivares, D. & Valenzuela, A. & Wenzel, G., 2018. "A comprehensive review on expansion planning: Models and tools for energy policy analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 98(C), pages 346-360.
    4. Strbac, Goran & Pollitt, Michael & Konstantinidis, Christos Vasilakos & Konstantelos, Ioannis & Moreno, Rodrigo & Newbery, David & Green, Richard, 2014. "Electricity transmission arrangements in Great Britain: Time for change?," Energy Policy, Elsevier, vol. 73(C), pages 298-311.
    5. Cadini, F. & Zio, E. & Petrescu, C.A., 2010. "Optimal expansion of an existing electrical power transmission network by multi-objective genetic algorithms," Reliability Engineering and System Safety, Elsevier, vol. 95(3), pages 173-181.
    6. Frysztacki, Martha Maria & Hörsch, Jonas & Hagenmeyer, Veit & Brown, Tom, 2021. "The strong effect of network resolution on electricity system models with high shares of wind and solar," Applied Energy, Elsevier, vol. 291(C).
    7. Akdemir, Kerem Ziya & Kern, Jordan D. & Lamontagne, Jonathan, 2022. "Assessing risks for New England's wholesale electricity market from wind power losses during extreme winter storms," Energy, Elsevier, vol. 251(C).
    8. Golombek, Rolf & Lind, Arne & Ringkjøb, Hans-Kristian & Seljom, Pernille, 2022. "The role of transmission and energy storage in European decarbonization towards 2050," Energy, Elsevier, vol. 239(PC).
    9. Oikonomou, Konstantinos & Tarroja, Brian & Kern, Jordan & Voisin, Nathalie, 2022. "Core process representation in power system operational models: Gaps, challenges, and opportunities for multisector dynamics research," Energy, Elsevier, vol. 238(PC).
    10. Akdemir, Kerem Ziya & Robertson, Bryson & Oikonomou, Konstantinos & Kern, Jordan & Voisin, Nathalie & Hanif, Sarmad & Bhattacharya, Saptarshi, 2023. "Opportunities for wave energy in bulk power system operations," Applied Energy, Elsevier, vol. 352(C).
    11. Ruiz, C. & Conejo, A.J., 2015. "Robust transmission expansion planning," European Journal of Operational Research, Elsevier, vol. 242(2), pages 390-401.
    12. Li, Can & Conejo, Antonio J. & Liu, Peng & Omell, Benjamin P. & Siirola, John D. & Grossmann, Ignacio E., 2022. "Mixed-integer linear programming models and algorithms for generation and transmission expansion planning of power systems," European Journal of Operational Research, Elsevier, vol. 297(3), pages 1071-1082.
    13. Zhenyu Zhuo & Ershun Du & Ning Zhang & Chris P. Nielsen & Xi Lu & Jinyu Xiao & Jiawei Wu & Chongqing Kang, 2022. "Cost increase in the electricity supply to achieve carbon neutrality in China," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    14. Rodríguez-Sarasty, Jesús A. & Debia, Sébastien & Pineau, Pierre-Olivier, 2021. "Deep decarbonization in Northeastern North America: The value of electricity market integration and hydropower," Energy Policy, Elsevier, vol. 152(C).
    15. Liu, Hailiang & Brown, Tom & Andresen, Gorm Bruun & Schlachtberger, David P. & Greiner, Martin, 2019. "The role of hydro power, storage and transmission in the decarbonization of the Chinese power system," Applied Energy, Elsevier, vol. 239(C), pages 1308-1321.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fang, Yiping & Sansavini, Giovanni, 2017. "Optimizing power system investments and resilience against attacks," Reliability Engineering and System Safety, Elsevier, vol. 159(C), pages 161-173.
    2. Evangelos S. Chatzistylianos & Georgios N. Psarros & Stavros A. Papathanassiou, 2024. "Insights from a Comprehensive Capacity Expansion Planning Modeling on the Operation and Value of Hydropower Plants under High Renewable Penetrations," Energies, MDPI, vol. 17(7), pages 1-29, April.
    3. Dranka, Géremi Gilson & Ferreira, Paula & Vaz, A. Ismael F., 2021. "A review of co-optimization approaches for operational and planning problems in the energy sector," Applied Energy, Elsevier, vol. 304(C).
    4. Onodera, Hiroaki & Delage, Rémi & Nakata, Toshihiko, 2024. "The role of regional renewable energy integration in electricity decarbonization—A case study of Japan," Applied Energy, Elsevier, vol. 363(C).
    5. Hamdi, Mohamed & El Salmawy, Hafez A. & Ragab, Reda, 2024. "Incorporating operational constraints into long-term energy planning: The case of the Egyptian power system under high share of renewables," Energy, Elsevier, vol. 300(C).
    6. Gacitua, L. & Gallegos, P. & Henriquez-Auba, R. & Lorca, Á. & Negrete-Pincetic, M. & Olivares, D. & Valenzuela, A. & Wenzel, G., 2018. "A comprehensive review on expansion planning: Models and tools for energy policy analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 98(C), pages 346-360.
    7. Haugen, Mari & Blaisdell-Pijuan, Paris L. & Botterud, Audun & Levin, Todd & Zhou, Zhi & Belsnes, Michael & Korpås, Magnus & Somani, Abhishek, 2024. "Power market models for the clean energy transition: State of the art and future research needs," Applied Energy, Elsevier, vol. 357(C).
    8. Li, Can & Conejo, Antonio J. & Liu, Peng & Omell, Benjamin P. & Siirola, John D. & Grossmann, Ignacio E., 2022. "Mixed-integer linear programming models and algorithms for generation and transmission expansion planning of power systems," European Journal of Operational Research, Elsevier, vol. 297(3), pages 1071-1082.
    9. Hemmati, Reza & Hooshmand, Rahmat-Allah & Khodabakhshian, Amin, 2016. "Coordinated generation and transmission expansion planning in deregulated electricity market considering wind farms," Renewable Energy, Elsevier, vol. 85(C), pages 620-630.
    10. Dimanchev, Emil G. & Hodge, Joshua L. & Parsons, John E., 2021. "The role of hydropower reservoirs in deep decarbonization policy," Energy Policy, Elsevier, vol. 155(C).
    11. Zolfaghari, Saeed & Akbari, Tohid, 2018. "Bilevel transmission expansion planning using second-order cone programming considering wind investment," Energy, Elsevier, vol. 154(C), pages 455-465.
    12. Adam Dominiak & Artur Rusowicz, 2022. "Change of Fossil-Fuel-Related Carbon Productivity Index of the Main Manufacturing Sectors in Poland," Energies, MDPI, vol. 15(19), pages 1-14, September.
    13. Gils, Hans Christian & Gardian, Hedda & Kittel, Martin & Schill, Wolf-Peter & Zerrahn, Alexander & Murmann, Alexander & Launer, Jann & Fehler, Alexander & Gaumnitz, Felix & van Ouwerkerk, Jonas & Bußa, 2022. "Modeling flexibility in energy systems — comparison of power sector models based on simplified test cases," Renewable and Sustainable Energy Reviews, Elsevier, vol. 158(C).
    14. Baringo, Luis & Boffino, Luigi & Oggioni, Giorgia, 2020. "Robust expansion planning of a distribution system with electric vehicles, storage and renewable units," Applied Energy, Elsevier, vol. 265(C).
    15. Faezeh Akhavizadegan & Lizhi Wang & James McCalley, 2020. "Scenario Selection for Iterative Stochastic Transmission Expansion Planning," Energies, MDPI, vol. 13(5), pages 1-18, March.
    16. Leonard Goke & Jens Weibezahn & Christian von Hirschhausen, 2021. "A collective blueprint, not a crystal ball: How expectations and participation shape long-term energy scenarios," Papers 2112.04821, arXiv.org, revised Dec 2022.
    17. Jing-Li Fan & Zezheng Li & Xi Huang & Kai Li & Xian Zhang & Xi Lu & Jianzhong Wu & Klaus Hubacek & Bo Shen, 2023. "A net-zero emissions strategy for China’s power sector using carbon-capture utilization and storage," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    18. Farrokhifar, Meisam & Nie, Yinghui & Pozo, David, 2020. "Energy systems planning: A survey on models for integrated power and natural gas networks coordination," Applied Energy, Elsevier, vol. 262(C).
    19. Grimm, Veronika & Schewe, Lars & Schmidt, Martin & Zöttl, Gregor, 2017. "Uniqueness of market equilibrium on a network: A peak-load pricing approach," European Journal of Operational Research, Elsevier, vol. 261(3), pages 971-983.
    20. Zekai Xu & Jinghan He & Zhao Liu & Zhiyi Zhao, 2023. "Collaborative Optimization of Transmission and Distribution Considering Energy Storage Systems on Both Sides of Transmission and Distribution," Energies, MDPI, vol. 16(13), pages 1-23, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:378:y:2025:i:pa:s0306261924022086. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.