IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v377y2025ipcs0306261924019962.html
   My bibliography  Save this article

Research on methane Hazard interval prediction method based on hybrid “model-data”driven strategy

Author

Listed:
  • Xu, Ningke
  • Li, Shuang
  • Xu, Kun
  • Lu, Cheng

Abstract

Safe mining of coal has an important impact on energy security, while effective control of methane hazard is the key to ensuring safe coal mining. Methane concentration is the main factor determining the hazard of methane in coal mines, and in order to limit the impact of methane on coal mine safety, this study proposes a methane concentration interval prediction method based on a hybrid “model-data” driven idea. Firstly, by analyzing the data and constructing a methane concentration prediction method based on model-driven, which reduces the influence of multicollinearity in the methane concentration series on the prediction effect, and then, in combination with the deep learning technique, a method based on the Wasserstein distance to improve the Informer model is proposed, and finally a hybrid-driven methane concentration interval prediction model is established by introducing the IOWGA operator and the statistical method. After an example analysis of a coal mine in Guizhou Province, China, the hybrid-driven model proposed in this study has better applicability and prediction accuracy in the methane concentration prediction task, which can effectively prevent the occurrence of coal mine accidents and is more in line with the needs of coal mine safety production.

Suggested Citation

  • Xu, Ningke & Li, Shuang & Xu, Kun & Lu, Cheng, 2025. "Research on methane Hazard interval prediction method based on hybrid “model-data”driven strategy," Applied Energy, Elsevier, vol. 377(PC).
  • Handle: RePEc:eee:appene:v:377:y:2025:i:pc:s0306261924019962
    DOI: 10.1016/j.apenergy.2024.124613
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261924019962
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2024.124613?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Bentsen, Lars Ødegaard & Warakagoda, Narada Dilp & Stenbro, Roy & Engelstad, Paal, 2023. "Spatio-temporal wind speed forecasting using graph networks and novel Transformer architectures," Applied Energy, Elsevier, vol. 333(C).
    2. Yuxin Huang & Jingdao Fan & Zhenguo Yan & Shugang Li & Yanping Wang, 2022. "A Gas Concentration Prediction Method Driven by a Spark Streaming Framework," Energies, MDPI, vol. 15(15), pages 1-13, July.
    3. Lili Yue & Jianhong Shi & Jingxuan Luo & Jinguan Lin, 2023. "A Parametric Bootstrap Approach for a One-Way Error Component Regression Model with Measurement Errors," Mathematics, MDPI, vol. 11(19), pages 1-13, October.
    4. You, Mengjie & Li, Shuang & Li, Dingwei & Cao, Qingren & Xu, Feng, 2020. "Evolutionary game analysis of coal-mine enterprise internal safety inspection system in China based on system dynamics," Resources Policy, Elsevier, vol. 67(C).
    5. Magdalena Tutak & Jarosław Brodny, 2019. "Predicting Methane Concentration in Longwall Regions Using Artificial Neural Networks," IJERPH, MDPI, vol. 16(8), pages 1-21, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hongxia Wang & Xiao Jin & Jianian Wang & Hongxia Hao, 2023. "Nonparametric Estimation for High-Dimensional Space Models Based on a Deep Neural Network," Mathematics, MDPI, vol. 11(18), pages 1-37, September.
    2. Shitao Gong & Xin Gao & Zhou Li & Linyan Chen, 2021. "Developing a Dynamic Supervision Mechanism to Improve Construction Safety Investment Supervision Efficiency in China: Theoretical Simulation of Evolutionary Game Process," IJERPH, MDPI, vol. 18(7), pages 1-29, March.
    3. Hendalianpour, Ayad & Liu, Peide & Amirghodsi, Sirous & Hamzehlou, Mohammad, 2022. "Designing a System Dynamics model to simulate criteria affecting oil and gas development contracts," Resources Policy, Elsevier, vol. 78(C).
    4. Yang, Ting & Yang, Zhenning & Li, Fei & Wang, Hengyu, 2024. "A short-term wind power forecasting method based on multivariate signal decomposition and variable selection," Applied Energy, Elsevier, vol. 360(C).
    5. Gorji, Mohammad-Ali & Shetab-Boushehri, Seyyed-Nader & Akbarzadeh, Meisam, 2023. "Evaluation and improvement of the resilience of a transportation system against epidemic diseases: A system dynamics approach," Transport Policy, Elsevier, vol. 133(C), pages 27-44.
    6. Jiang, Wenjun & Liu, Bo & Liang, Yang & Gao, Huanxiang & Lin, Pengfei & Zhang, Dongqin & Hu, Gang, 2024. "Applicability analysis of transformer to wind speed forecasting by a novel deep learning framework with multiple atmospheric variables," Applied Energy, Elsevier, vol. 353(PB).
    7. Elshafei, Basem & Popov, Atanas & Giddings, Donald, 2024. "Enhanced offshore wind resource assessment using hybrid data fusion and numerical models," Energy, Elsevier, vol. 310(C).
    8. Junhao Zhao & Xiaodong Shen & Youbo Liu & Junyong Liu & Xisheng Tang, 2024. "Enhancing Aggregate Load Forecasting Accuracy with Adversarial Graph Convolutional Imputation Network and Learnable Adjacency Matrix," Energies, MDPI, vol. 17(18), pages 1-28, September.
    9. Jun Tu & Liangdong Wan & Zijiao Sun, 2023. "Safety Improvement of Sustainable Coal Transportation in Mines: A Contract Design Perspective," Sustainability, MDPI, vol. 15(3), pages 1-21, January.
    10. You, Qi & Yu, Kai & Zhou, Lujie & Zhang, Jing & Lv, Maoyun & Wang, Jiansheng, 2023. "Research on risk analysis and prevention policy of coal mine workers' group behavior based on evolutionary game," Resources Policy, Elsevier, vol. 80(C).
    11. Xinshang You & Shuo Zhao & Yanbo Yang & Dongli Zhang, 2022. "Influence of the Government Department on the Production Capacity Reserve of Emergency Enterprises Based on Multi-Scenario Evolutionary Game," Sustainability, MDPI, vol. 14(23), pages 1-35, November.
    12. Jiao Liu & Shuang Li & Weijun Bao & Kun Xu, 2022. "Could the Management System of Safety Partnership Change Miners’ Unsafe Behavior?," Sustainability, MDPI, vol. 14(20), pages 1-14, October.
    13. Jinhua Zhang & Hui Li & Peng Cheng & Jie Yan, 2024. "Interpretable Wind Power Short-Term Power Prediction Model Using Deep Graph Attention Network," Energies, MDPI, vol. 17(2), pages 1-16, January.
    14. Xian, Sidong & Feng, Miaomiao & Cheng, Yue, 2023. "Incremental nonlinear trend fuzzy granulation for carbon trading time series forecast," Applied Energy, Elsevier, vol. 352(C).
    15. Zhang, Dongqin & Hu, Gang & Song, Jie & Gao, Huanxiang & Ren, Hehe & Chen, Wenli, 2024. "A novel spatio-temporal wind speed forecasting method based on the microscale meteorological model and a hybrid deep learning model," Energy, Elsevier, vol. 288(C).
    16. Guo, Jian & Zhong, Minghao & Chen, Shuran, 2022. "Analysis and simulation of BECCS vertical integration model in China based on evolutionary game and system dynamics," Energy, Elsevier, vol. 252(C).
    17. Shi, Peiming & Lin, Shengmao & Song, Dongran & Xu, Xuefang & Wu, Jie, 2024. "TRNet: A trend and residual network utilizing novel hilly attention mechanism for wind speed prediction in complex scenario," Energy, Elsevier, vol. 309(C).
    18. Yan Chen & Miaolin Yu & Haochong Wei & Huanxing Qi & Yiming Qin & Xiaochun Hu & Rongxing Jiang, 2025. "A Lightweight Framework for Rapid Response to Short-Term Forecasting of Wind Farms Using Dual Scale Modeling and Normalized Feature Learning," Energies, MDPI, vol. 18(3), pages 1-20, January.
    19. Wu, Tangjie & Ling, Qiang, 2024. "STELLM: Spatio-temporal enhanced pre-trained large language model for wind speed forecasting," Applied Energy, Elsevier, vol. 375(C).
    20. Niu, Zhewen & Han, Xiaoqing & Zhang, Dongxia & Wu, Yuxiang & Lan, Songyan, 2024. "Interpretable wind power forecasting combining seasonal-trend representations learning with temporal fusion transformers architecture," Energy, Elsevier, vol. 306(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:377:y:2025:i:pc:s0306261924019962. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.