IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v377y2025ipcs0306261924019962.html
   My bibliography  Save this article

Research on methane Hazard interval prediction method based on hybrid “model-data”driven strategy

Author

Listed:
  • Xu, Ningke
  • Li, Shuang
  • Xu, Kun
  • Lu, Cheng

Abstract

Safe mining of coal has an important impact on energy security, while effective control of methane hazard is the key to ensuring safe coal mining. Methane concentration is the main factor determining the hazard of methane in coal mines, and in order to limit the impact of methane on coal mine safety, this study proposes a methane concentration interval prediction method based on a hybrid “model-data” driven idea. Firstly, by analyzing the data and constructing a methane concentration prediction method based on model-driven, which reduces the influence of multicollinearity in the methane concentration series on the prediction effect, and then, in combination with the deep learning technique, a method based on the Wasserstein distance to improve the Informer model is proposed, and finally a hybrid-driven methane concentration interval prediction model is established by introducing the IOWGA operator and the statistical method. After an example analysis of a coal mine in Guizhou Province, China, the hybrid-driven model proposed in this study has better applicability and prediction accuracy in the methane concentration prediction task, which can effectively prevent the occurrence of coal mine accidents and is more in line with the needs of coal mine safety production.

Suggested Citation

  • Xu, Ningke & Li, Shuang & Xu, Kun & Lu, Cheng, 2025. "Research on methane Hazard interval prediction method based on hybrid “model-data”driven strategy," Applied Energy, Elsevier, vol. 377(PC).
  • Handle: RePEc:eee:appene:v:377:y:2025:i:pc:s0306261924019962
    DOI: 10.1016/j.apenergy.2024.124613
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261924019962
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2024.124613?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Lili Yue & Jianhong Shi & Jingxuan Luo & Jinguan Lin, 2023. "A Parametric Bootstrap Approach for a One-Way Error Component Regression Model with Measurement Errors," Mathematics, MDPI, vol. 11(19), pages 1-13, October.
    2. Bentsen, Lars Ødegaard & Warakagoda, Narada Dilp & Stenbro, Roy & Engelstad, Paal, 2023. "Spatio-temporal wind speed forecasting using graph networks and novel Transformer architectures," Applied Energy, Elsevier, vol. 333(C).
    3. You, Mengjie & Li, Shuang & Li, Dingwei & Cao, Qingren & Xu, Feng, 2020. "Evolutionary game analysis of coal-mine enterprise internal safety inspection system in China based on system dynamics," Resources Policy, Elsevier, vol. 67(C).
    4. Magdalena Tutak & Jarosław Brodny, 2019. "Predicting Methane Concentration in Longwall Regions Using Artificial Neural Networks," IJERPH, MDPI, vol. 16(8), pages 1-21, April.
    5. Yuxin Huang & Jingdao Fan & Zhenguo Yan & Shugang Li & Yanping Wang, 2022. "A Gas Concentration Prediction Method Driven by a Spark Streaming Framework," Energies, MDPI, vol. 15(15), pages 1-13, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hongxia Wang & Xiao Jin & Jianian Wang & Hongxia Hao, 2023. "Nonparametric Estimation for High-Dimensional Space Models Based on a Deep Neural Network," Mathematics, MDPI, vol. 11(18), pages 1-37, September.
    2. Chen, Fuhao & Yan, Jie & Liu, Yongqian & Yan, Yamin & Tjernberg, Lina Bertling, 2024. "A novel meta-learning approach for few-shot short-term wind power forecasting," Applied Energy, Elsevier, vol. 362(C).
    3. Shitao Gong & Xin Gao & Zhou Li & Linyan Chen, 2021. "Developing a Dynamic Supervision Mechanism to Improve Construction Safety Investment Supervision Efficiency in China: Theoretical Simulation of Evolutionary Game Process," IJERPH, MDPI, vol. 18(7), pages 1-29, March.
    4. Liu, Lu & Zhao, Qiuhong & Bi, Yanlin, 2020. "Why rent-seeking behavior may exist in Chinese mining safety production inspection system and how to alleviate it: A tripartite game analysis," Resources Policy, Elsevier, vol. 69(C).
    5. Wenxin Su & Xin Gao & Yukun Jiang & Jinrong Li, 2021. "Developing a Construction Safety Standard System to Enhance Safety Supervision Efficiency in China: A Theoretical Simulation of the Evolutionary Game Process," Sustainability, MDPI, vol. 13(23), pages 1-22, December.
    6. Hendalianpour, Ayad & Liu, Peide & Amirghodsi, Sirous & Hamzehlou, Mohammad, 2022. "Designing a System Dynamics model to simulate criteria affecting oil and gas development contracts," Resources Policy, Elsevier, vol. 78(C).
    7. Lv, Yunlong & Hu, Qin & Xu, Hang & Lin, Huiyao & Wu, Yufan, 2024. "An ultra-short-term wind power prediction method based on spatial-temporal attention graph convolutional model," Energy, Elsevier, vol. 293(C).
    8. Juan Wang & Xin Wan & Ruide Tu, 2022. "Game Analysis of the Evolution of Local Government’s River Chief System Implementation Strategy," IJERPH, MDPI, vol. 19(4), pages 1-13, February.
    9. Yang, Ting & Yang, Zhenning & Li, Fei & Wang, Hengyu, 2024. "A short-term wind power forecasting method based on multivariate signal decomposition and variable selection," Applied Energy, Elsevier, vol. 360(C).
    10. Baskoro, Firly Rachmaditya & Takahashi, Katsuhiko & Morikawa, Katsumi & Nagasawa, Keisuke, 2021. "System dynamics approach in determining coal utilization scenario in Indonesia," Resources Policy, Elsevier, vol. 73(C).
    11. Dong, Xianzhou & Luo, Yongqiang & Yuan, Shuo & Tian, Zhiyong & Zhang, Limao & Wu, Xiaoying & Liu, Baobing, 2025. "Building electricity load forecasting based on spatiotemporal correlation and electricity consumption behavior information," Applied Energy, Elsevier, vol. 377(PB).
    12. Xu, Xuefang & Hu, Shiting & Shao, Huaishuang & Shi, Peiming & Li, Ruixiong & Li, Deguang, 2023. "A spatio-temporal forecasting model using optimally weighted graph convolutional network and gated recurrent unit for wind speed of different sites distributed in an offshore wind farm," Energy, Elsevier, vol. 284(C).
    13. Gorji, Mohammad-Ali & Shetab-Boushehri, Seyyed-Nader & Akbarzadeh, Meisam, 2023. "Evaluation and improvement of the resilience of a transportation system against epidemic diseases: A system dynamics approach," Transport Policy, Elsevier, vol. 133(C), pages 27-44.
    14. Meng, Huixing & Liu, Xuan & Xing, Jinduo & Zio, Enrico, 2022. "A method for economic evaluation of predictive maintenance technologies by integrating system dynamics and evolutionary game modelling," Reliability Engineering and System Safety, Elsevier, vol. 222(C).
    15. Jiang, Wenjun & Liu, Bo & Liang, Yang & Gao, Huanxiang & Lin, Pengfei & Zhang, Dongqin & Hu, Gang, 2024. "Applicability analysis of transformer to wind speed forecasting by a novel deep learning framework with multiple atmospheric variables," Applied Energy, Elsevier, vol. 353(PB).
    16. Chen, Zhengganzhe & Zhang, Bin & Du, Chenglong & Meng, Wei & Meng, Anbo, 2024. "A novel dynamic spatio-temporal graph convolutional network for wind speed interval prediction," Energy, Elsevier, vol. 294(C).
    17. Elshafei, Basem & Popov, Atanas & Giddings, Donald, 2024. "Enhanced offshore wind resource assessment using hybrid data fusion and numerical models," Energy, Elsevier, vol. 310(C).
    18. Wu, Binrong & Wang, Lin, 2024. "Two-stage decomposition and temporal fusion transformers for interpretable wind speed forecasting," Energy, Elsevier, vol. 288(C).
    19. Lluís Sanmiquel-Pera & Marc Bascompta & Hernán Francisco Anticoi, 2019. "Analysis of a Historical Accident in a Spanish Coal Mine," IJERPH, MDPI, vol. 16(19), pages 1-11, September.
    20. Junhao Zhao & Xiaodong Shen & Youbo Liu & Junyong Liu & Xisheng Tang, 2024. "Enhancing Aggregate Load Forecasting Accuracy with Adversarial Graph Convolutional Imputation Network and Learnable Adjacency Matrix," Energies, MDPI, vol. 17(18), pages 1-28, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:377:y:2025:i:pc:s0306261924019962. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.