IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v141y2017icp1681-1694.html
   My bibliography  Save this article

Economic potential of industrial demand side management in pulp and paper industry

Author

Listed:
  • Helin, Kristo
  • Käki, Anssi
  • Zakeri, Behnam
  • Lahdelma, Risto
  • Syri, Sanna

Abstract

Increasing levels of variable renewable energy require additional flexible resources in the global energy system. In countries with energy-intensive industries, flexibility may be increased through industrial demand side management (IDSM). In most studies, the potential of IDSM is estimated from a technical or theoretical viewpoint. However, IDSM capacity is only utilized if the industry finds it profitable, and thus the economic potential should also be assessed. The focus of this paper is on the intra-day IDSM potential of a paper mill site that is active in the Nordic power market. An optimization model is built to estimate the costs that occur when the paper mill executes regulating power bids, if the original production schedule has been optimized against a spot price forecast. The costs are estimated for different sizes of bids and a marginal cost curve is provided for pricing them. Using this marginal cost curve, the market potential of the case mill site is assessed. It is found that this potential is greatly influenced by the costs of executing regulating power bids. The results indicate that transmission system operators and policy makers should account for economic factors when assessing the potential of market based IDSM.

Suggested Citation

  • Helin, Kristo & Käki, Anssi & Zakeri, Behnam & Lahdelma, Risto & Syri, Sanna, 2017. "Economic potential of industrial demand side management in pulp and paper industry," Energy, Elsevier, vol. 141(C), pages 1681-1694.
  • Handle: RePEc:eee:energy:v:141:y:2017:i:c:p:1681-1694
    DOI: 10.1016/j.energy.2017.11.075
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544217319333
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2017.11.075?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zareen, N. & Mustafa, M.W. & Sultana, U. & Nadia, R. & Khattak, M.A., 2015. "Optimal real time cost-benefit based demand response with intermittent resources," Energy, Elsevier, vol. 90(P2), pages 1695-1706.
    2. Gils, Hans Christian, 2014. "Assessment of the theoretical demand response potential in Europe," Energy, Elsevier, vol. 67(C), pages 1-18.
    3. Makkonen, Simo & Lahdelma, Risto, 2006. "Non-convex power plant modelling in energy optimisation," European Journal of Operational Research, Elsevier, vol. 171(3), pages 1113-1126, June.
    4. Johansson, Bengt, 2013. "Security aspects of future renewable energy systems–A short overview," Energy, Elsevier, vol. 61(C), pages 598-605.
    5. Hu, Zhongyi & Bao, Yukun & Chiong, Raymond & Xiong, Tao, 2015. "Mid-term interval load forecasting using multi-output support vector regression with a memetic algorithm for feature selection," Energy, Elsevier, vol. 84(C), pages 419-431.
    6. Buttler, Alexander & Dinkel, Felix & Franz, Simon & Spliethoff, Hartmut, 2016. "Variability of wind and solar power – An assessment of the current situation in the European Union based on the year 2014," Energy, Elsevier, vol. 106(C), pages 147-161.
    7. Boßmann, Tobias & Eser, Eike Johannes, 2016. "Model-based assessment of demand-response measures—A comprehensive literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 1637-1656.
    8. Eduardo Faria & Stein-Erik Fleten, 2011. "Day-ahead market bidding for a Nordic hydropower producer: taking the Elbas market into account," Computational Management Science, Springer, vol. 8(1), pages 75-101, April.
    9. Zakeri, Behnam & Syri, Sanna & Rinne, Samuli, 2015. "Higher renewable energy integration into the existing energy system of Finland – Is there any maximum limit?," Energy, Elsevier, vol. 92(P3), pages 244-259.
    10. Marshman, D.J. & Chmelyk, T. & Sidhu, M.S. & Gopaluni, R.B. & Dumont, G.A., 2010. "Energy optimization in a pulp and paper mill cogeneration facility," Applied Energy, Elsevier, vol. 87(11), pages 3514-3525, November.
    11. Rong, Aiying & Lahdelma, Risto & Grunow, Martin, 2009. "An improved unit decommitment algorithm for combined heat and power systems," European Journal of Operational Research, Elsevier, vol. 195(2), pages 552-562, June.
    12. Shiljkut, Vladimir M. & Rajakovic, Nikola Lj., 2015. "Demand response capacity estimation in various supply areas," Energy, Elsevier, vol. 92(P3), pages 476-486.
    13. Paulus, Moritz & Borggrefe, Frieder, 2011. "The potential of demand-side management in energy-intensive industries for electricity markets in Germany," Applied Energy, Elsevier, vol. 88(2), pages 432-441, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Baxter Williams & Daniel Bishop & Patricio Gallardo & J. Geoffrey Chase, 2023. "Demand Side Management in Industrial, Commercial, and Residential Sectors: A Review of Constraints and Considerations," Energies, MDPI, vol. 16(13), pages 1-28, July.
    2. Herre, Lars & Tomasini, Federica & Paridari, Kaveh & Söder, Lennart & Nordström, Lars, 2020. "Simplified model of integrated paper mill for optimal bidding in energy and reserve markets," Applied Energy, Elsevier, vol. 279(C).
    3. Valdes, Javier & Masip Macia, Yunesky & Dorner, Wolfgang & Ramirez Camargo, Luis, 2021. "Unsupervised grouping of industrial electricity demand profiles: Synthetic profiles for demand-side management applications," Energy, Elsevier, vol. 215(PA).
    4. Hessam Golmohamadi, 2022. "Demand-Side Flexibility in Power Systems: A Survey of Residential, Industrial, Commercial, and Agricultural Sectors," Sustainability, MDPI, vol. 14(13), pages 1-16, June.
    5. Yann Mey Yee & Lilian Sy & Kryzia Lomibao & Josephine Dela Cruz German & Hui-Ming Wee, 2023. "Sustainable Economic Production Quantity Model Considering Greenhouse Gas and Wastewater Emissions," Sustainability, MDPI, vol. 15(4), pages 1-30, February.
    6. Lerch, Philipp & Scheller, Fabian & Reichelt, David G. & Menzel, Katharina & Bruckner, Thomas, 2024. "Electricity cost and CO2 savings potential for chlor-alkali electrolysis plants: Benefits of electricity price dependent demand response," Applied Energy, Elsevier, vol. 355(C).
    7. Yue, Hui & Worrell, Ernst & Crijns-Graus, Wina, 2018. "Modeling the multiple benefits of electricity savings for emissions reduction on power grid level: A case study of China’s chemical industry," Applied Energy, Elsevier, vol. 230(C), pages 1603-1632.
    8. Chen, Xiaobin & Man, Yi & Zheng, Qifu & Hu, Yusha & Li, Jigeng & Hong, Mengna, 2019. "Industrial verification of energy saving for the single-tier cylinder based paper drying process," Energy, Elsevier, vol. 170(C), pages 261-272.
    9. Eunjung Lee & Keon Baek & Jinho Kim, 2020. "Evaluation of Demand Response Potential Flexibility in the Industry Based on a Data-Driven Approach," Energies, MDPI, vol. 13(23), pages 1-12, December.
    10. Andre Leippi & Markus Fleschutz & Michael D. Murphy, 2022. "A Review of EV Battery Utilization in Demand Response Considering Battery Degradation in Non-Residential Vehicle-to-Grid Scenarios," Energies, MDPI, vol. 15(9), pages 1-22, April.
    11. Wanapinit, Natapon & Thomsen, Jessica & Kost, Christoph & Weidlich, Anke, 2021. "An MILP model for evaluating the optimal operation and flexibility potential of end-users," Applied Energy, Elsevier, vol. 282(PB).
    12. Kirchem, Dana & Lynch, Muireann Á. & Bertsch, Valentin & Casey, Eoin, 2020. "Modelling demand response with process models and energy systems models: Potential applications for wastewater treatment within the energy-water nexus," Applied Energy, Elsevier, vol. 260(C).
    13. Li, Qiang & Zhou, Yongcheng & Wei, Fanchao & Li, Shuangxiu & Wang, Zhonghao & Li, Jiajia & Zhou, Guowen & Liu, Jinfu & Yan, Peigang & Yu, Daren, 2024. "Multi-time scale scheduling for virtual power plants: Integrating the flexibility of power generation and multi-user loads while considering the capacity degradation of energy storage systems," Applied Energy, Elsevier, vol. 362(C).
    14. Kirchem, Dana & Lynch, Muireann Á & Casey, Eoin & Bertsch, Valentin, 2019. "Demand response within the energy-for-water-nexus: A review," Papers WP637, Economic and Social Research Institute (ESRI).
    15. Natapon Wanapinit & Jessica Thomsen, 2021. "Synergies between Renewable Energy and Flexibility Investments: A Case of a Medium-Sized Industry," Energies, MDPI, vol. 14(22), pages 1-24, November.
    16. Michael Schoepf & Martin Weibelzahl & Lisa Nowka, 2018. "The Impact of Substituting Production Technologies on the Economic Demand Response Potential in Industrial Processes," Energies, MDPI, vol. 11(9), pages 1-13, August.
    17. Wanapinit, Natapon & Thomsen, Jessica & Weidlich, Anke, 2022. "Integrating flexibility provision into operation planning: A generic framework to assess potentials and bid prices of end-users," Energy, Elsevier, vol. 261(PB).
    18. Songsong Chen & Feixiang Gong & Mingqiang Zhang & Jindou Yuan & Siyang Liao & Hongyin Chen & Dezhi Li & Shiming Tian & Xiaojian Hu, 2021. "Planning and Scheduling for Industrial Demand-Side Management: State of the Art, Opportunities and Challenges under Integration of Energy Internet and Industrial Internet," Sustainability, MDPI, vol. 13(14), pages 1-18, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Herre, Lars & Tomasini, Federica & Paridari, Kaveh & Söder, Lennart & Nordström, Lars, 2020. "Simplified model of integrated paper mill for optimal bidding in energy and reserve markets," Applied Energy, Elsevier, vol. 279(C).
    2. McPherson, Madeleine & Stoll, Brady, 2020. "Demand response for variable renewable energy integration: A proposed approach and its impacts," Energy, Elsevier, vol. 197(C).
    3. Valdes, Javier & Masip Macia, Yunesky & Dorner, Wolfgang & Ramirez Camargo, Luis, 2021. "Unsupervised grouping of industrial electricity demand profiles: Synthetic profiles for demand-side management applications," Energy, Elsevier, vol. 215(PA).
    4. Dranka, Géremi Gilson & Ferreira, Paula, 2019. "Review and assessment of the different categories of demand response potentials," Energy, Elsevier, vol. 179(C), pages 280-294.
    5. Kirchem, Dana & Lynch, Muireann Á. & Bertsch, Valentin & Casey, Eoin, 2020. "Modelling demand response with process models and energy systems models: Potential applications for wastewater treatment within the energy-water nexus," Applied Energy, Elsevier, vol. 260(C).
    6. Rong, Aiying & Lahdelma, Risto, 2017. "An efficient model and algorithm for the transmission-constrained multi-site combined heat and power system," European Journal of Operational Research, Elsevier, vol. 258(3), pages 1106-1117.
    7. Michael Schoepf & Martin Weibelzahl & Lisa Nowka, 2018. "The Impact of Substituting Production Technologies on the Economic Demand Response Potential in Industrial Processes," Energies, MDPI, vol. 11(9), pages 1-13, August.
    8. Jan Stede & Karin Arnold & Christa Dufter & Georg Holtz & Serafin von Roon & Jörn C. Richstein, 2020. "The Role of Aggregators in Facilitating Industrial Demand Response: Evidence from Germany," Discussion Papers of DIW Berlin 1840, DIW Berlin, German Institute for Economic Research.
    9. Cai, Qiran & Xu, Qingyang & Qing, Jing & Shi, Gang & Liang, Qiao-Mei, 2022. "Promoting wind and photovoltaics renewable energy integration through demand response: Dynamic pricing mechanism design and economic analysis for smart residential communities," Energy, Elsevier, vol. 261(PB).
    10. Paterakis, Nikolaos G. & Erdinç, Ozan & Catalão, João P.S., 2017. "An overview of Demand Response: Key-elements and international experience," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 871-891.
    11. Richstein, Jörn C. & Hosseinioun, Seyed Saeed, 2020. "Industrial demand response: How network tariffs and regulation (do not) impact flexibility provision in electricity markets and reserves," Applied Energy, Elsevier, vol. 278(C).
    12. Fatras, Nicolas & Ma, Zheng & Jørgensen, Bo Nørregaard, 2022. "Process-to-market matrix mapping: A multi-criteria evaluation framework for industrial processes’ electricity market participation feasibility," Applied Energy, Elsevier, vol. 313(C).
    13. Müller, Theresa & Möst, Dominik, 2018. "Demand Response Potential: Available when Needed?," Energy Policy, Elsevier, vol. 115(C), pages 181-198.
    14. Keles, Dogan & Bublitz, Andreas & Zimmermann, Florian & Genoese, Massimo & Fichtner, Wolf, 2016. "Analysis of design options for the electricity market: The German case," Applied Energy, Elsevier, vol. 183(C), pages 884-901.
    15. Ma, Yiqun, 2016. "Demand Response Potential of Electricity End-users Facing Real Time Pricing," Research Report 16019-EEF, University of Groningen, Research Institute SOM (Systems, Organisations and Management).
    16. Khanna, Tarun M., 2022. "Using agricultural demand for reducing costs of renewable energy integration in India," Energy, Elsevier, vol. 254(PC).
    17. Katz, Jonas & Andersen, Frits Møller & Morthorst, Poul Erik, 2016. "Load-shift incentives for household demand response: Evaluation of hourly dynamic pricing and rebate schemes in a wind-based electricity system," Energy, Elsevier, vol. 115(P3), pages 1602-1616.
    18. Ayman Esmat & Julio Usaola & María Ángeles Moreno, 2018. "Distribution-Level Flexibility Market for Congestion Management," Energies, MDPI, vol. 11(5), pages 1-24, April.
    19. Loganthurai, P. & Rajasekaran, V. & Gnanambal, K., 2016. "Evolutionary algorithm based optimum scheduling of processing units in rice industry to reduce peak demand," Energy, Elsevier, vol. 107(C), pages 419-430.
    20. Kirkerud, J.G. & Nagel, N.O. & Bolkesjø, T.F., 2021. "The role of demand response in the future renewable northern European energy system," Energy, Elsevier, vol. 235(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:141:y:2017:i:c:p:1681-1694. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.