What-if: A causal machine learning approach to control-oriented modelling for building thermal dynamics
Author
Abstract
Suggested Citation
DOI: 10.1016/j.apenergy.2024.124550
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Victor Chernozhukov & Denis Chetverikov & Mert Demirer & Esther Duflo & Christian Hansen & Whitney Newey & James Robins, 2018.
"Double/debiased machine learning for treatment and structural parameters,"
Econometrics Journal, Royal Economic Society, vol. 21(1), pages 1-68, February.
- Victor Chernozhukov & Denis Chetverikov & Mert Demirer & Esther Duflo & Christian Hansen & Whitney Newey & James Robins, 2017. "Double/Debiased Machine Learning for Treatment and Structural Parameters," NBER Working Papers 23564, National Bureau of Economic Research, Inc.
- Victor Chernozhukov & Denis Chetverikov & Mert Demirer & Esther Duflo & Christian Hansen & Whitney K. Newey & James Robins, 2017. "Double/debiased machine learning for treatment and structural parameters," CeMMAP working papers CWP28/17, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Victor Chernozhukov & Denis Chetverikov & Mert Demirer & Esther Duflo & Christian Hansen & Whitney K. Newey & James Robins, 2017. "Double/debiased machine learning for treatment and structural parameters," CeMMAP working papers 28/17, Institute for Fiscal Studies.
- Gianluca Serale & Massimo Fiorentini & Alfonso Capozzoli & Daniele Bernardini & Alberto Bemporad, 2018. "Model Predictive Control (MPC) for Enhancing Building and HVAC System Energy Efficiency: Problem Formulation, Applications and Opportunities," Energies, MDPI, vol. 11(3), pages 1-35, March.
- Wang, Zhe & Hong, Tianzhen, 2020. "Reinforcement learning for building controls: The opportunities and challenges," Applied Energy, Elsevier, vol. 269(C).
- Di Natale, L. & Svetozarevic, B. & Heer, P. & Jones, C.N., 2022. "Physically Consistent Neural Networks for building thermal modeling: Theory and analysis," Applied Energy, Elsevier, vol. 325(C).
- Drgoňa, Ján & Picard, Damien & Kvasnica, Michal & Helsen, Lieve, 2018. "Approximate model predictive building control via machine learning," Applied Energy, Elsevier, vol. 218(C), pages 199-216.
- Victor Chernozhukov & Denis Chetverikov & Mert Demirer & Esther Duflo & Christian Hansen & Whitney Newey, 2017. "Double/Debiased/Neyman Machine Learning of Treatment Effects," American Economic Review, American Economic Association, vol. 107(5), pages 261-265, May.
- Ferracuti, Francesco & Fonti, Alessandro & Ciabattoni, Lucio & Pizzuti, Stefano & Arteconi, Alessia & Helsen, Lieve & Comodi, Gabriele, 2017. "Data-driven models for short-term thermal behaviour prediction in real buildings," Applied Energy, Elsevier, vol. 204(C), pages 1375-1387.
- Kazmi, Hussain & Suykens, Johan & Balint, Attila & Driesen, Johan, 2019. "Multi-agent reinforcement learning for modeling and control of thermostatically controlled loads," Applied Energy, Elsevier, vol. 238(C), pages 1022-1035.
- Donald B. Rubin, 2005. "Causal Inference Using Potential Outcomes: Design, Modeling, Decisions," Journal of the American Statistical Association, American Statistical Association, vol. 100, pages 322-331, March.
- Brian K Lee & Justin Lessler & Elizabeth A Stuart, 2011. "Weight Trimming and Propensity Score Weighting," PLOS ONE, Public Library of Science, vol. 6(3), pages 1-6, March.
- H. Kazmi & M. Keijsers & Fahad Mehmood & C. Miller, 2022. "Energy Balances, Thermal Performance, and Heat Stress: Disentangling Occupant Behaviour and Weather Influences in a Dutch Net-Zero Energy Neighborhood," Post-Print hal-04317814, HAL.
- Zhang, Xiang & Rasmussen, Christoffer & Saelens, Dirk & Roels, Staf, 2022. "Time-dependent solar aperture estimation of a building: Comparing grey-box and white-box approaches," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
- Massidda, Luca & Marrocu, Marino, 2023. "Total and thermal load forecasting in residential communities through probabilistic methods and causal machine learning," Applied Energy, Elsevier, vol. 351(C).
- Genov, Evgenii & Cauwer, Cedric De & Kriekinge, Gilles Van & Coosemans, Thierry & Messagie, Maarten, 2024. "Forecasting flexibility of charging of electric vehicles: Tree and cluster-based methods," Applied Energy, Elsevier, vol. 353(PA).
- Jayathissa, P. & Luzzatto, M. & Schmidli, J. & Hofer, J. & Nagy, Z. & Schlueter, A., 2017. "Optimising building net energy demand with dynamic BIPV shading," Applied Energy, Elsevier, vol. 202(C), pages 726-735.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Mark Kattenberg & Bas Scheer & Jurre Thiel, 2023. "Causal forests with fixed effects for treatment effect heterogeneity in difference-in-differences," CPB Discussion Paper 452, CPB Netherlands Bureau for Economic Policy Analysis.
- Lee, Zachary E. & Zhang, K. Max, 2021. "Generalized reinforcement learning for building control using Behavioral Cloning," Applied Energy, Elsevier, vol. 304(C).
- Helmut Wasserbacher & Martin Spindler, 2022. "Machine learning for financial forecasting, planning and analysis: recent developments and pitfalls," Digital Finance, Springer, vol. 4(1), pages 63-88, March.
- Taboga, Vincent & Gehring, Clement & Cam, Mathieu Le & Dagdougui, Hanane & Bacon, Pierre-Luc, 2024. "Neural differential equations for temperature control in buildings under demand response programs," Applied Energy, Elsevier, vol. 368(C).
- Pinto, Giuseppe & Kathirgamanathan, Anjukan & Mangina, Eleni & Finn, Donal P. & Capozzoli, Alfonso, 2022. "Enhancing energy management in grid-interactive buildings: A comparison among cooperative and coordinated architectures," Applied Energy, Elsevier, vol. 310(C).
- Silvestri, Alberto & Coraci, Davide & Brandi, Silvio & Capozzoli, Alfonso & Borkowski, Esther & Köhler, Johannes & Wu, Duan & Zeilinger, Melanie N. & Schlueter, Arno, 2024. "Real building implementation of a deep reinforcement learning controller to enhance energy efficiency and indoor temperature control," Applied Energy, Elsevier, vol. 368(C).
- Sant’Anna, Pedro H.C. & Zhao, Jun, 2020.
"Doubly robust difference-in-differences estimators,"
Journal of Econometrics, Elsevier, vol. 219(1), pages 101-122.
- Pedro H. C. Sant'Anna & Jun B. Zhao, 2018. "Doubly Robust Difference-in-Differences Estimators," Papers 1812.01723, arXiv.org, revised May 2020.
- Yoganathan, Vignesh & Osburg, Victoria-Sophie, 2024. "The mind in the machine: Estimating mind perception's effect on user satisfaction with voice-based conversational agents," Journal of Business Research, Elsevier, vol. 175(C).
- Gokhale, Gargya & Claessens, Bert & Develder, Chris, 2022. "Physics informed neural networks for control oriented thermal modeling of buildings," Applied Energy, Elsevier, vol. 314(C).
- Huber Martin & Wüthrich Kaspar, 2019.
"Local Average and Quantile Treatment Effects Under Endogeneity: A Review,"
Journal of Econometric Methods, De Gruyter, vol. 8(1), pages 1-27, January.
- Huber, Martin & Wüthrich, Kaspar, 2019. "Local Average and Quantile Treatment Effects Under Endogeneity: A Review," University of California at San Diego, Economics Working Paper Series qt4j29d8sc, Department of Economics, UC San Diego.
- Songul Cinaroglu, 2020. "Modelling unbalanced catastrophic health expenditure data by using machine‐learning methods," Intelligent Systems in Accounting, Finance and Management, John Wiley & Sons, Ltd., vol. 27(4), pages 168-181, October.
- Yuya Sasaki & Takuya Ura & Yichong Zhang, 2022.
"Unconditional quantile regression with high‐dimensional data,"
Quantitative Economics, Econometric Society, vol. 13(3), pages 955-978, July.
- Yuya Sasaki & Takuya Ura & Yichong Zhang, 2020. "Unconditional Quantile Regression with High Dimensional Data," Papers 2007.13659, arXiv.org, revised Feb 2022.
- Victor Chernozhukov & Carlos Cinelli & Whitney Newey & Amit Sharma & Vasilis Syrgkanis, 2021.
"Long Story Short: Omitted Variable Bias in Causal Machine Learning,"
Papers
2112.13398, arXiv.org, revised May 2024.
- Victor Chernozhukov & Carlos Cinelli & Whitney Newey & Amit Sharma & Vasilis Syrgkanis, 2022. "Long Story Short: Omitted Variable Bias in Causal Machine Learning," NBER Working Papers 30302, National Bureau of Economic Research, Inc.
- Esfandiar Maasoumi & Jianqiu Wang & Zhuo Wang & Ke Wu, 2024. "Identifying factors via automatic debiased machine learning," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 39(3), pages 438-461, April.
- Guido W. Imbens, 2020.
"Potential Outcome and Directed Acyclic Graph Approaches to Causality: Relevance for Empirical Practice in Economics,"
Journal of Economic Literature, American Economic Association, vol. 58(4), pages 1129-1179, December.
- Guido Imbens, 2019. "Potential Outcome and Directed Acyclic Graph Approaches to Causality: Relevance for Empirical Practice in Economics," NBER Working Papers 26104, National Bureau of Economic Research, Inc.
- Jushan Bai & Sung Hoon Choi & Yuan Liao, 2021.
"Feasible generalized least squares for panel data with cross-sectional and serial correlations,"
Empirical Economics, Springer, vol. 60(1), pages 309-326, January.
- Jushan Bai & Sung Hoon Choi & Yuan Liao, 2019. "Feasible Generalized Least Squares for Panel Data with Cross-sectional and Serial Correlations," Papers 1910.09004, arXiv.org, revised Aug 2020.
- Xing, Lu & Han, DongHao & Hui, Xie, 2023. "The impact of carbon policy on corporate risk-taking with a double/debiased machine learning based difference-in-differences approach," Finance Research Letters, Elsevier, vol. 58(PC).
- Yong Bian & Xiqian Wang & Qin Zhang, 2023. "How Does China's Household Portfolio Selection Vary with Financial Inclusion?," Papers 2311.01206, arXiv.org.
- Pinto, Giuseppe & Deltetto, Davide & Capozzoli, Alfonso, 2021. "Data-driven district energy management with surrogate models and deep reinforcement learning," Applied Energy, Elsevier, vol. 304(C).
- Paolo Libenzio Brignoli & Alessandro Varacca & Cornelis Gardebroek & Paolo Sckokai, 2024. "Machine learning to predict grains futures prices," Agricultural Economics, International Association of Agricultural Economists, vol. 55(3), pages 479-497, May.
More about this item
Keywords
Causal machine learning; Data driven; Counterfactual; Building heat dynamics; Extrapolation;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:377:y:2025:i:pc:s0306261924019330. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.