IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v377y2025ipbs0306261924018361.html
   My bibliography  Save this article

Performance evaluation of liquid CO2 battery for SOFC energy system load management

Author

Listed:
  • Wang, Ronghe
  • Song, Panpan
  • Wei, Mingshan
  • Tian, Ran
  • Sun, Xiaoxia
  • Zhuge, Weilin
  • Zhang, Yangjun

Abstract

The integration of solid oxide fuel cell (SOFC) and energy storage mechanisms is a key method for achieving energy infrastructure transformation and energy conservation and emission reduction. When integrated with storage solutions, SOFC enables dynamic power output adjustment, facilitating a responsive match to variable electricity demands across the diurnal spectrum. This study pioneers the proposition of employing a novel carbon dioxide battery, based on the carbon dioxide liquefaction cycle, for application within SOFC power generation systems. The mathematical models of liquid carbon dioxide battery and SOFC system integrated with thermal energy recovery are developed. The system performance was comprehensively evaluated via energy and exergy analyses. The results of parameter sensitivity analysis indicate that the liquid carbon dioxide battery can achieve the maximum round-trip efficiency of 62.88 % and the energy storage density of 14.26 kW·h/m3, which indicate that it can well balance its round-trip efficiency and energy storage density, making it very competitive when compared to other other compressed gas energy storage configurations. Furthermore, the research findings indicate that elevating the maximum working pressure of the system can enhance both the cycle efficiency and the energy storage density. Nonetheless, beyond a threshold of 20 MPa, the incremental benefits to system performance diminish significantly, potentially introducing heightened safety concerns. Additionally, the strategic adjustment of the compression and expansion ratios is identified as a pivotal factor in optimizing system performance. Moreover, the modulation of the cooling water flow rate within the multiphase flow heat exchanger has been discerned to significantly influence the heat absorption by the liquid carbon dioxide battery, thereby impacting its operational strategy. In summary, the liquid carbon dioxide battery proposed in this study for application in SOFC power generation systems represents an efficient, compact, and environmentally benign energy storage solution.

Suggested Citation

  • Wang, Ronghe & Song, Panpan & Wei, Mingshan & Tian, Ran & Sun, Xiaoxia & Zhuge, Weilin & Zhang, Yangjun, 2025. "Performance evaluation of liquid CO2 battery for SOFC energy system load management," Applied Energy, Elsevier, vol. 377(PB).
  • Handle: RePEc:eee:appene:v:377:y:2025:i:pb:s0306261924018361
    DOI: 10.1016/j.apenergy.2024.124453
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261924018361
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2024.124453?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:377:y:2025:i:pb:s0306261924018361. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.