Feasibility assessment of a novel compressed carbon dioxide energy storage system based on 13X zeolite temperature swing adsorption: Thermodynamic and economic analysis
Author
Abstract
Suggested Citation
DOI: 10.1016/j.apenergy.2023.121562
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- She, Xiaohui & Peng, Xiaodong & Nie, Binjian & Leng, Guanghui & Zhang, Xiaosong & Weng, Likui & Tong, Lige & Zheng, Lifang & Wang, Li & Ding, Yulong, 2017. "Enhancement of round trip efficiency of liquid air energy storage through effective utilization of heat of compression," Applied Energy, Elsevier, vol. 206(C), pages 1632-1642.
- Feng, Changling & E, Jiaqiang & Han, Wei & Deng, Yuanwang & Zhang, Bin & Zhao, Xiaohuan & Han, Dandan, 2021. "Key technology and application analysis of zeolite adsorption for energy storage and heat-mass transfer process: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).
- Sun, Lei & Tang, Bo & Xie, Yonghui, 2022. "Performance assessment of two compressed and liquid carbon dioxide energy storage systems: Thermodynamic, exergoeconomic analysis and multi-objective optimization," Energy, Elsevier, vol. 256(C).
- Liu, Zhan & Liu, Xu & Zhang, Weifeng & Yang, Shanju & Li, Hailong & Yang, Xiaohu, 2022. "Thermodynamic analysis on the feasibility of a liquid energy storage system using CO2-based mixture as the working fluid," Energy, Elsevier, vol. 238(PA).
- Zhang, Yuan & Yang, Ke & Hong, Hui & Zhong, Xiaohui & Xu, Jianzhong, 2016. "Thermodynamic analysis of a novel energy storage system with carbon dioxide as working fluid," Renewable Energy, Elsevier, vol. 99(C), pages 682-697.
- Liu, Zhan & Liu, Zihui & Xin, Xuan & Yang, Xiaohu, 2020. "Proposal and assessment of a novel carbon dioxide energy storage system with electrical thermal storage and ejector condensing cycle: Energy and exergy analysis," Applied Energy, Elsevier, vol. 269(C).
- Ibrahim, H. & Ilinca, A. & Perron, J., 2008. "Energy storage systems--Characteristics and comparisons," Renewable and Sustainable Energy Reviews, Elsevier, vol. 12(5), pages 1221-1250, June.
- Sciacovelli, Adriano & Li, Yongliang & Chen, Haisheng & Wu, Yuting & Wang, Jihong & Garvey, Seamus & Ding, Yulong, 2017. "Dynamic simulation of Adiabatic Compressed Air Energy Storage (A-CAES) plant with integrated thermal storage – Link between components performance and plant performance," Applied Energy, Elsevier, vol. 185(P1), pages 16-28.
- Wang, Mingkun & Zhao, Pan & Yang, Yi & Dai, Yiping, 2015. "Performance analysis of energy storage system based on liquid carbon dioxide with different configurations," Energy, Elsevier, vol. 93(P2), pages 1931-1942.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Dewevre, Florent & Lacroix, Clément & Loubar, Khaled & Poncet, Sébastien, 2024. "Carbon dioxide energy storage systems: Current researches and perspectives," Renewable Energy, Elsevier, vol. 224(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Zhang, Tianhang & Qin, Shusong & Wei, Guohua & Xie, Min & Peng, Yirui & Tang, Zhipei & Sun, Qiaoqun & Du, Qian & Feng, Dongdong & Gao, Jianmin & Li, Ximei & Zhang, Yu, 2023. "Thermodynamic analysis of a novel trans-critical compressed carbon dioxide energy storage system based on 13X zeolite temperature swing adsorption," Energy, Elsevier, vol. 282(C).
- Dewevre, Florent & Lacroix, Clément & Loubar, Khaled & Poncet, Sébastien, 2024. "Carbon dioxide energy storage systems: Current researches and perspectives," Renewable Energy, Elsevier, vol. 224(C).
- Huang, Rui & Zhou, Kang & Liu, Zhan, 2022. "Reduction on the inefficiency of heat recovery storage in a compressed carbon dioxide energy storage system," Energy, Elsevier, vol. 244(PB).
- Liu, Zhan & Liu, Xu & Zhang, Weifeng & Yang, Shanju & Li, Hailong & Yang, Xiaohu, 2022. "Thermodynamic analysis on the feasibility of a liquid energy storage system using CO2-based mixture as the working fluid," Energy, Elsevier, vol. 238(PA).
- Ghorbani, Bahram & Salehi, Gholamreza & Ebrahimi, Armin & Taghavi, Masoud, 2021. "Energy, exergy and pinch analyses of a novel energy storage structure using post-combustion CO2 separation unit, dual pressure Linde-Hampson liquefaction system, two-stage organic Rankine cycle and ge," Energy, Elsevier, vol. 233(C).
- He, Wei & Wang, Jihong, 2018. "Optimal selection of air expansion machine in Compressed Air Energy Storage: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 87(C), pages 77-95.
- Fu, Xintao & Yan, Xuewen & Liu, Zhan, 2023. "Coupling thermodynamics and economics of liquid CO2 energy storage system with refrigerant additives," Energy, Elsevier, vol. 284(C).
- Wan, Yuke & Wu, Chuang & Liu, Yu & Liu, Chao & Li, Hang & Wang, Jiangfeng, 2023. "A technical feasibility study of a liquid carbon dioxide energy storage system: Integrated component design and off-design performance analysis," Applied Energy, Elsevier, vol. 350(C).
- Qi, Meng & Park, Jinwoo & Landon, Robert Stephen & Kim, Jeongdong & Liu, Yi & Moon, Il, 2022. "Continuous and flexible Renewable-Power-to-Methane via liquid CO2 energy storage: Revisiting the techno-economic potential," Renewable and Sustainable Energy Reviews, Elsevier, vol. 153(C).
- Qi, Meng & Park, Jinwoo & Lee, Inkyu & Moon, Il, 2022. "Liquid air as an emerging energy vector towards carbon neutrality: A multi-scale systems perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 159(C).
- Yang, D.L. & Tang, G.H. & Sheng, Q. & Li, X.L. & Fan, Y.H. & He, Y.L. & Luo, K.H., 2023. "Effects of multiple insufficient charging and discharging on compressed carbon dioxide energy storage," Energy, Elsevier, vol. 278(PA).
- Aliaga, D.M. & Romero, C.P. & Feick, R. & Brooks, W.K. & Campbell, A.N., 2024. "Modelling and simulation of a novel liquid air energy storage system with a liquid piston, NH3 and CO2 cycles for enhanced heat and cold utilisation," Applied Energy, Elsevier, vol. 362(C).
- Guo, Hao & Gong, Maoqiong & Sun, Hailiang, 2021. "Performance analysis of a novel energy storage system based on the combination of positive and reverse organic Rankine cycles," Energy, Elsevier, vol. 231(C).
- Li, Yi & Yu, Hao & Li, Yi & Liu, Yaning & Zhang, Guijin & Tang, Dong & Jiang, Zhongming, 2020. "Numerical study on the hydrodynamic and thermodynamic properties of compressed carbon dioxide energy storage in aquifers," Renewable Energy, Elsevier, vol. 151(C), pages 1318-1338.
- Chen Yang & Li Sun & Hao Chen, 2023. "Thermodynamics Analysis of a Novel Compressed Air Energy Storage System Combined with Solid Oxide Fuel Cell–Micro Gas Turbine and Using Low-Grade Waste Heat as Heat Source," Energies, MDPI, vol. 16(19), pages 1-28, October.
- Hao, Yinping & He, Qing & Du, Dongmei, 2020. "A trans-critical carbon dioxide energy storage system with heat pump to recover stored heat of compression," Renewable Energy, Elsevier, vol. 152(C), pages 1099-1108.
- Zhang, Yuan & Liang, Tianyang & Yang, Ke, 2022. "An integrated energy storage system consisting of Compressed Carbon dioxide energy storage and Organic Rankine Cycle: Exergoeconomic evaluation and multi-objective optimization," Energy, Elsevier, vol. 247(C).
- Liu, Zhan & Liu, Zihui & Xin, Xuan & Yang, Xiaohu, 2020. "Proposal and assessment of a novel carbon dioxide energy storage system with electrical thermal storage and ejector condensing cycle: Energy and exergy analysis," Applied Energy, Elsevier, vol. 269(C).
- Hamdy, Sarah & Morosuk, Tatiana & Tsatsaronis, George, 2019. "Exergoeconomic optimization of an adiabatic cryogenics-based energy storage system," Energy, Elsevier, vol. 183(C), pages 812-824.
- Sun, Lei & Tang, Bo & Xie, Yonghui, 2022. "Performance assessment of two compressed and liquid carbon dioxide energy storage systems: Thermodynamic, exergoeconomic analysis and multi-objective optimization," Energy, Elsevier, vol. 256(C).
More about this item
Keywords
Compressed CO2 energy storage; CO2 adsorption; 13X zeolite; Thermodynamic simulation;All these keywords.
JEL classification:
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:348:y:2023:i:c:s0306261923009261. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.