Diffusion-based inpainting approach for multifunctional short-term load forecasting
Author
Abstract
Suggested Citation
DOI: 10.1016/j.apenergy.2024.124442
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Salinas, David & Flunkert, Valentin & Gasthaus, Jan & Januschowski, Tim, 2020. "DeepAR: Probabilistic forecasting with autoregressive recurrent networks," International Journal of Forecasting, Elsevier, vol. 36(3), pages 1181-1191.
- Jiang, Zongxi & Zhang, Luliang & Ji, Tianyao, 2023. "NSDAR: A neural network-based model for similar day screening and electric load forecasting," Applied Energy, Elsevier, vol. 349(C).
- Yin, Linfei & Xie, Jiaxing, 2021. "Multi-temporal-spatial-scale temporal convolution network for short-term load forecasting of power systems," Applied Energy, Elsevier, vol. 283(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Andreas Lenk & Marcus Vogt & Christoph Herrmann, 2024. "An Approach to Predicting Energy Demand Within Automobile Production Using the Temporal Fusion Transformer Model," Energies, MDPI, vol. 18(1), pages 1-34, December.
- Fan, Jingmin & Zhong, Mingwei & Guan, Yuanpeng & Yi, Siqi & Xu, Cancheng & Zhai, Yanpeng & Zhou, Yongwang, 2024. "An online long-term load forecasting method: Hierarchical highway network based on crisscross feature collaboration," Energy, Elsevier, vol. 299(C).
- Jiang, Zongxi & Zhang, Luliang & Ji, Tianyao, 2023. "NSDAR: A neural network-based model for similar day screening and electric load forecasting," Applied Energy, Elsevier, vol. 349(C).
- Spiliotis, Evangelos & Makridakis, Spyros & Kaltsounis, Anastasios & Assimakopoulos, Vassilios, 2021. "Product sales probabilistic forecasting: An empirical evaluation using the M5 competition data," International Journal of Production Economics, Elsevier, vol. 240(C).
- Bojer, Casper Solheim & Meldgaard, Jens Peder, 2021. "Kaggle forecasting competitions: An overlooked learning opportunity," International Journal of Forecasting, Elsevier, vol. 37(2), pages 587-603.
- Ying Shu & Chengfu Ding & Lingbing Tao & Chentao Hu & Zhixin Tie, 2023. "Air Pollution Prediction Based on Discrete Wavelets and Deep Learning," Sustainability, MDPI, vol. 15(9), pages 1-19, April.
- Alexandros Menelaos Tzortzis & Sotiris Pelekis & Evangelos Spiliotis & Evangelos Karakolis & Spiros Mouzakitis & John Psarras & Dimitris Askounis, 2023. "Transfer Learning for Day-Ahead Load Forecasting: A Case Study on European National Electricity Demand Time Series," Mathematics, MDPI, vol. 12(1), pages 1-24, December.
- Wang, Shengjie & Kang, Yanfei & Petropoulos, Fotios, 2024. "Combining probabilistic forecasts of intermittent demand," European Journal of Operational Research, Elsevier, vol. 315(3), pages 1038-1048.
- Pesantez, Jorge E. & Li, Binbin & Lee, Christopher & Zhao, Zhizhen & Butala, Mark & Stillwell, Ashlynn S., 2023. "A Comparison Study of Predictive Models for Electricity Demand in a Diverse Urban Environment," Energy, Elsevier, vol. 283(C).
- Wen, Honglin & Pinson, Pierre & Gu, Jie & Jin, Zhijian, 2024. "Wind energy forecasting with missing values within a fully conditional specification framework," International Journal of Forecasting, Elsevier, vol. 40(1), pages 77-95.
- Zizhen Cheng & Li Wang & Yumeng Yang, 2023. "A Hybrid Feature Pyramid CNN-LSTM Model with Seasonal Inflection Month Correction for Medium- and Long-Term Power Load Forecasting," Energies, MDPI, vol. 16(7), pages 1-18, March.
- Anna Almosova & Niek Andresen, 2023. "Nonlinear inflation forecasting with recurrent neural networks," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 42(2), pages 240-259, March.
- Philippe Goulet Coulombe & Mikael Frenette & Karin Klieber, 2023. "From Reactive to Proactive Volatility Modeling with Hemisphere Neural Networks," Working Papers 23-04, Chair in macroeconomics and forecasting, University of Quebec in Montreal's School of Management, revised Nov 2023.
- Frison, Lilli & Gölzhäuser, Simon & Bitterling, Moritz & Kramer, Wolfgang, 2024. "Evaluating different artificial neural network forecasting approaches for optimizing district heating network operation," Energy, Elsevier, vol. 307(C).
- Jayesh Thaker & Robert Höller, 2022. "A Comparative Study of Time Series Forecasting of Solar Energy Based on Irradiance Classification," Energies, MDPI, vol. 15(8), pages 1-26, April.
- Liu, Chen & Wang, Chao & Tran, Minh-Ngoc & Kohn, Robert, 2025. "A long short-term memory enhanced realized conditional heteroskedasticity model," Economic Modelling, Elsevier, vol. 142(C).
- Kandaswamy Paramasivan & Brinda Subramani & Nandan Sudarsanam, 2022. "Counterfactual analysis of the impact of the first two waves of the COVID-19 pandemic on the reporting and registration of missing people in India," Palgrave Communications, Palgrave Macmillan, vol. 9(1), pages 1-14, December.
- Xu, Huifeng & Hu, Feihu & Liang, Xinhao & Zhao, Guoqing & Abugunmi, Mohammad, 2024. "A framework for electricity load forecasting based on attention mechanism time series depthwise separable convolutional neural network," Energy, Elsevier, vol. 299(C).
- Bojer, Casper Solheim, 2022. "Understanding machine learning-based forecasting methods: A decomposition framework and research opportunities," International Journal of Forecasting, Elsevier, vol. 38(4), pages 1555-1561.
- Sergio Consoli & Luca Tiozzo Pezzoli & Elisa Tosetti, 2022. "Neural forecasting of the Italian sovereign bond market with economic news," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 185(S2), pages 197-224, December.
More about this item
Keywords
Short-term load forecasting; Diffusion model; Imputation; Multifunctional forecasting;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:377:y:2025:i:pb:s0306261924018257. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.