IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v377y2025ipas0306261924017896.html
   My bibliography  Save this article

Centralised rehearsal of decentralised cooperation: Multi-agent reinforcement learning for the scalable coordination of residential energy flexibility

Author

Listed:
  • Charbonnier, Flora
  • Peng, Bei
  • Vienne, Julie
  • Stai, Eleni
  • Morstyn, Thomas
  • McCulloch, Malcolm

Abstract

This paper investigates the use of deep multi-agent reinforcement learning (MARL) for the coordination of residential energy flexibility. Particularly, we focus on achieving cooperation between homes in a way that is fully privacy-preserving, scalable, and that allows for the management of distribution network voltage constraints. Previous work demonstrated that MARL-based distributed control can be achieved with no sharing of personal data required during execution. However, previous cooperative MARL-based approaches impose an ever greater training computational burden as the size of the system increases, limiting scalability. Moreover, they do not manage their impact on distribution network constraints. We therefore adopt a deep multi-agent actor–critic method that uses a centralised but factored critic to rehearse coordination ahead of execution, such that homes can successfully cooperate at scale, with only first-order growth in computational time as the system size increases. Training times are thus 34 times shorter than with a previous state-of-the-art reinforcement learning approach without the factored critic for 30 homes. Moreover, experiments show that the cooperation of agents allows for a decrease of 47.2% in the likelihood of under-voltages. The results indicate that there is significant potential value for management of energy user bills, battery depreciation, and distribution network voltage management, with minimal information and communication infrastructure requirements, no interference with daily activities, and no sharing of personal data.

Suggested Citation

  • Charbonnier, Flora & Peng, Bei & Vienne, Julie & Stai, Eleni & Morstyn, Thomas & McCulloch, Malcolm, 2025. "Centralised rehearsal of decentralised cooperation: Multi-agent reinforcement learning for the scalable coordination of residential energy flexibility," Applied Energy, Elsevier, vol. 377(PA).
  • Handle: RePEc:eee:appene:v:377:y:2025:i:pa:s0306261924017896
    DOI: 10.1016/j.apenergy.2024.124406
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261924017896
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2024.124406?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:377:y:2025:i:pa:s0306261924017896. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.