Deep transfer Q-learning with virtual leader-follower for supply-demand Stackelberg game of smart grid
Author
Abstract
Suggested Citation
DOI: 10.1016/j.energy.2017.05.114
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Lijing Zhu & Jingzhou Wang & Arash Farnoosh & Xunzhang Pan, 2021. "A Game-Theory Analysis of Electric Vehicle Adoption in Beijing under License Plate Control Policy," Working Papers hal-03500766, HAL.
- Hu, Chenxi & Zhang, Jun & Yuan, Hongxia & Gao, Tianlu & Jiang, Huaiguang & Yan, Jing & Wenzhong Gao, David & Wang, Fei-Yue, 2022. "Black swan event small-sample transfer learning (BEST-L) and its case study on electrical power prediction in COVID-19," Applied Energy, Elsevier, vol. 309(C).
- Zhang, Xiaoshun & Guo, Zhengxun & Pan, Feng & Yang, Yuyao & Li, Chuansheng, 2023. "Dynamic carbon emission factor based interactive control of distribution network by a generalized regression neural network assisted optimization," Energy, Elsevier, vol. 283(C).
- Charbonnier, Flora & Morstyn, Thomas & McCulloch, Malcolm D., 2022. "Coordination of resources at the edge of the electricity grid: Systematic review and taxonomy," Applied Energy, Elsevier, vol. 318(C).
- Qian, Fanyue & Gao, Weijun & Yang, Yongwen & Yu, Dan, 2020. "Potential analysis of the transfer learning model in short and medium-term forecasting of building HVAC energy consumption," Energy, Elsevier, vol. 193(C).
- Vázquez-Canteli, José R. & Nagy, Zoltán, 2019. "Reinforcement learning for demand response: A review of algorithms and modeling techniques," Applied Energy, Elsevier, vol. 235(C), pages 1072-1089.
- Luqin Fan & Jing Zhang & Yu He & Ying Liu & Tao Hu & Heng Zhang, 2021. "Optimal Scheduling of Microgrid Based on Deep Deterministic Policy Gradient and Transfer Learning," Energies, MDPI, vol. 14(3), pages 1-15, January.
- Gao, Yuan & Matsunami, Yuki & Miyata, Shohei & Akashi, Yasunori, 2022. "Multi-agent reinforcement learning dealing with hybrid action spaces: A case study for off-grid oriented renewable building energy system," Applied Energy, Elsevier, vol. 326(C).
- Wang, Zhe & Hong, Tianzhen, 2020. "Reinforcement learning for building controls: The opportunities and challenges," Applied Energy, Elsevier, vol. 269(C).
- Xue Zhou & Jianan Shou & Weiwei Cui, 2022. "A Game-Theoretic Approach to Design Solar Power Generation/Storage Microgrid System for the Community in China," Sustainability, MDPI, vol. 14(16), pages 1-21, August.
- Gao, Yuan & Matsunami, Yuki & Miyata, Shohei & Akashi, Yasunori, 2022. "Operational optimization for off-grid renewable building energy system using deep reinforcement learning," Applied Energy, Elsevier, vol. 325(C).
- Charbonnier, Flora & Morstyn, Thomas & McCulloch, Malcolm D., 2022. "Scalable multi-agent reinforcement learning for distributed control of residential energy flexibility," Applied Energy, Elsevier, vol. 314(C).
- Hernandez-Matheus, Alejandro & Löschenbrand, Markus & Berg, Kjersti & Fuchs, Ida & Aragüés-Peñalba, Mònica & Bullich-Massagué, Eduard & Sumper, Andreas, 2022. "A systematic review of machine learning techniques related to local energy communities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 170(C).
- Zhang, Xiaoshun & Li, Shengnan & He, Tingyi & Yang, Bo & Yu, Tao & Li, Haofei & Jiang, Lin & Sun, Liming, 2019. "Memetic reinforcement learning based maximum power point tracking design for PV systems under partial shading condition," Energy, Elsevier, vol. 174(C), pages 1079-1090.
More about this item
Keywords
Deep transfer Q-learning; Virtual leader-follower; Supply-demand Stackelberg game; Smart grid;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:133:y:2017:i:c:p:348-365. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.