IDEAS home Printed from https://ideas.repec.org/a/eee/enepol/v118y2018icp474-481.html
   My bibliography  Save this article

Mitigating the impact of personal vehicle electrification: A power generation perspective

Author

Listed:
  • Crozier, Constance
  • Apostolopoulou, Dimitra
  • McCulloch, Malcolm

Abstract

The number of electric vehicles on the road in the UK is expected to rise quickly in the coming years, and this is likely to have an impact on the operation of the power grid. This paper first quantifies the consequences of allowing a completely electric fleet to charge freely, then considers whether there is a practical way in which the impacts can be mitigated. We predict that, with an entirely electric fleet, the UK power generation capacity would need to increase by 1/3. We show that it is possible to completely mitigate this with controlled charging, although substantial infrastructure would be required. However, we propose a simple scheme which could largely avoid the negative effect and does not require the creation of new infrastructure. We show that this reduces the projected increase in peak electricity demand by 80–99%.

Suggested Citation

  • Crozier, Constance & Apostolopoulou, Dimitra & McCulloch, Malcolm, 2018. "Mitigating the impact of personal vehicle electrification: A power generation perspective," Energy Policy, Elsevier, vol. 118(C), pages 474-481.
  • Handle: RePEc:eee:enepol:v:118:y:2018:i:c:p:474-481
    DOI: 10.1016/j.enpol.2018.03.056
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0301421518301927
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.enpol.2018.03.056?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hobman, Elizabeth V. & Frederiks, Elisha R. & Stenner, Karen & Meikle, Sarah, 2016. "Uptake and usage of cost-reflective electricity pricing: Insights from psychology and behavioural economics," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 455-467.
    2. Richardson, David B., 2013. "Electric vehicles and the electric grid: A review of modeling approaches, Impacts, and renewable energy integration," Renewable and Sustainable Energy Reviews, Elsevier, vol. 19(C), pages 247-254.
    3. Farhar, B.C. & Maksimovic, D. & Tomac, W.A. & Coburn, T.C., 2016. "A field study of human factors and vehicle performance associated with PHEV adaptation," Energy Policy, Elsevier, vol. 93(C), pages 265-277.
    4. Taylor, James W. & de Menezes, Lilian M. & McSharry, Patrick E., 2006. "A comparison of univariate methods for forecasting electricity demand up to a day ahead," International Journal of Forecasting, Elsevier, vol. 22(1), pages 1-16.
    5. Langbroek, Joram H.M. & Franklin, Joel P. & Susilo, Yusak O., 2017. "When do you charge your electric vehicle? A stated adaptation approach," Energy Policy, Elsevier, vol. 108(C), pages 565-573.
    6. Lyon, Thomas P. & Michelin, Mark & Jongejan, Arie & Leahy, Thomas, 2012. "Is “smart charging” policy for electric vehicles worthwhile?," Energy Policy, Elsevier, vol. 41(C), pages 259-268.
    7. Serradilla, Javier & Wardle, Josey & Blythe, Phil & Gibbon, Jane, 2017. "An evidence-based approach for investment in rapid-charging infrastructure," Energy Policy, Elsevier, vol. 106(C), pages 514-524.
    8. Morrissey, Patrick & Weldon, Peter & O’Mahony, Margaret, 2016. "Future standard and fast charging infrastructure planning: An analysis of electric vehicle charging behaviour," Energy Policy, Elsevier, vol. 89(C), pages 257-270.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jose Esteves & Daniel Alonso-Martínez & Guillermo de Haro, 2021. "Profiling Spanish Prospective Buyers of Electric Vehicles Based on Demographics," Sustainability, MDPI, vol. 13(16), pages 1-22, August.
    2. Charbonnier, Flora & Morstyn, Thomas & McCulloch, Malcolm D., 2022. "Coordination of resources at the edge of the electricity grid: Systematic review and taxonomy," Applied Energy, Elsevier, vol. 318(C).
    3. Dixon, James & Bukhsh, Waqquas & Edmunds, Calum & Bell, Keith, 2020. "Scheduling electric vehicle charging to minimise carbon emissions and wind curtailment," Renewable Energy, Elsevier, vol. 161(C), pages 1072-1091.
    4. Charbonnier, Flora & Morstyn, Thomas & McCulloch, Malcolm D., 2022. "Scalable multi-agent reinforcement learning for distributed control of residential energy flexibility," Applied Energy, Elsevier, vol. 314(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ji, Zhenya & Huang, Xueliang, 2018. "Plug-in electric vehicle charging infrastructure deployment of China towards 2020: Policies, methodologies, and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 710-727.
    2. Langbroek, Joram H.M. & Franklin, Joel P. & Susilo, Yusak O., 2017. "When do you charge your electric vehicle? A stated adaptation approach," Energy Policy, Elsevier, vol. 108(C), pages 565-573.
    3. Chengxiang Zhuge & Chunfu Shao & Xia Li, 2019. "Empirical Analysis of Parking Behaviour of Conventional and Electric Vehicles for Parking Modelling: A Case Study of Beijing, China," Energies, MDPI, vol. 12(16), pages 1-21, August.
    4. Szinai, Julia K. & Sheppard, Colin J.R. & Abhyankar, Nikit & Gopal, Anand R., 2020. "Reduced grid operating costs and renewable energy curtailment with electric vehicle charge management," Energy Policy, Elsevier, vol. 136(C).
    5. Yong, Jia Ying & Ramachandaramurthy, Vigna K. & Tan, Kang Miao & Mithulananthan, N., 2015. "A review on the state-of-the-art technologies of electric vehicle, its impacts and prospects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 49(C), pages 365-385.
    6. Yan Bao & Yu Luo & Weige Zhang & Mei Huang & Le Yi Wang & Jiuchun Jiang, 2018. "A Bi-Level Optimization Approach to Charging Load Regulation of Electric Vehicle Fast Charging Stations Based on a Battery Energy Storage System," Energies, MDPI, vol. 11(1), pages 1-21, January.
    7. Fischer, David & Harbrecht, Alexander & Surmann, Arne & McKenna, Russell, 2019. "Electric vehicles’ impacts on residential electric local profiles – A stochastic modelling approach considering socio-economic, behavioural and spatial factors," Applied Energy, Elsevier, vol. 233, pages 644-658.
    8. Hoarau, Quentin & Perez, Yannick, 2019. "Network tariff design with prosumers and electromobility: Who wins, who loses?," Energy Economics, Elsevier, vol. 83(C), pages 26-39.
    9. Yumiko Iwafune & Kazuhiko Ogimoto & Hitoshi Azuma, 2019. "Integration of Electric Vehicles into the Electric Power System Based on Results of Road Traffic Census," Energies, MDPI, vol. 12(10), pages 1-21, May.
    10. Anamarija Falkoni & Antun Pfeifer & Goran Krajačić, 2020. "Vehicle-to-Grid in Standard and Fast Electric Vehicle Charging: Comparison of Renewable Energy Source Utilization and Charging Costs," Energies, MDPI, vol. 13(6), pages 1-22, March.
    11. Manríquez, Francisco & Sauma, Enzo & Aguado, José & de la Torre, Sebastián & Contreras, Javier, 2020. "The impact of electric vehicle charging schemes in power system expansion planning," Applied Energy, Elsevier, vol. 262(C).
    12. Ma, Shao-Chao & Fan, Ying, 2020. "A deployment model of EV charging piles and its impact on EV promotion," Energy Policy, Elsevier, vol. 146(C).
    13. Morsy Nour & José Pablo Chaves-Ávila & Gaber Magdy & Álvaro Sánchez-Miralles, 2020. "Review of Positive and Negative Impacts of Electric Vehicles Charging on Electric Power Systems," Energies, MDPI, vol. 13(18), pages 1-34, September.
    14. Wu, Wei & Lin, Boqiang, 2021. "Benefits of electric vehicles integrating into power grid," Energy, Elsevier, vol. 224(C).
    15. Simona Bigerna & Silvia Micheli, 2018. "Attitudes Toward Electric Vehicles: The Case of Perugia Using a Fuzzy Set Analysis," Sustainability, MDPI, vol. 10(11), pages 1-14, November.
    16. Hu, Junjie & Morais, Hugo & Sousa, Tiago & Lind, Morten, 2016. "Electric vehicle fleet management in smart grids: A review of services, optimization and control aspects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 1207-1226.
    17. Chaouachi, Aymen & Bompard, Ettore & Fulli, Gianluca & Masera, Marcelo & De Gennaro, Michele & Paffumi, Elena, 2016. "Assessment framework for EV and PV synergies in emerging distribution systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 719-728.
    18. Maria Taljegard & Lisa Göransson & Mikael Odenberger & Filip Johnsson, 2021. "To Represent Electric Vehicles in Electricity Systems Modelling—Aggregated Vehicle Representation vs. Individual Driving Profiles," Energies, MDPI, vol. 14(3), pages 1-25, January.
    19. Baresch, Martin & Moser, Simon, 2019. "Allocation of e-car charging: Assessing the utilization of charging infrastructures by location," Transportation Research Part A: Policy and Practice, Elsevier, vol. 124(C), pages 388-395.
    20. Funcke, Simon & Bauknecht, Dierk, 2016. "Typology of centralised and decentralised visions for electricity infrastructure," Utilities Policy, Elsevier, vol. 40(C), pages 67-74.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:enepol:v:118:y:2018:i:c:p:474-481. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/enpol .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.