IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v373y2024ics0306261924011401.html
   My bibliography  Save this article

ProADD: Proactive battery anomaly dual detection leveraging denoising convolutional autoencoder and incremental voltage analysis

Author

Listed:
  • Jeon, Jihun
  • Cheon, Hojin
  • Jung, Byungil
  • Kim, Hongseok

Abstract

The use of lithium-ion batteries is increasing fast in many fields such as electric vehicles (EVs) and energy storage system (ESS). However, the number of accidents caused by thermal runaway of lithium-ion batteries is also increasing. Hence, it is critical to diagnose lithium-ion batteries proactively for safe operation. This paper considers both electrochemical model and deep learning model to capture the intrinsic characteristics of battery and diagnose its state from complementary perspectives. First, the denoising autoencoder (DAE) is leveraged to detect outliers in latent space clustering. Second, the traditional incremental capacity analysis (ICA) is revisited and incremental voltage analysis (IVA) is proposed to make it suitable for real-time ESS operation. Then, a method is proposed that jointly considers the DAE error and the IVA peak to proactively detect anomaly battery modules of ESS. Specifically, one-class support vector machine (OCSVM) is leveraged as well as the transformed Z-score. Our results confirm that the proposed framework named ProADD clearly identifies and quantifies anomaly modules, which provides a guideline for safe ESS operation in real fields.

Suggested Citation

  • Jeon, Jihun & Cheon, Hojin & Jung, Byungil & Kim, Hongseok, 2024. "ProADD: Proactive battery anomaly dual detection leveraging denoising convolutional autoencoder and incremental voltage analysis," Applied Energy, Elsevier, vol. 373(C).
  • Handle: RePEc:eee:appene:v:373:y:2024:i:c:s0306261924011401
    DOI: 10.1016/j.apenergy.2024.123757
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261924011401
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2024.123757?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kristen A. Severson & Peter M. Attia & Norman Jin & Nicholas Perkins & Benben Jiang & Zi Yang & Michael H. Chen & Muratahan Aykol & Patrick K. Herring & Dimitrios Fraggedakis & Martin Z. Bazant & Step, 2019. "Data-driven prediction of battery cycle life before capacity degradation," Nature Energy, Nature, vol. 4(5), pages 383-391, May.
    2. Datong Liu & Hong Wang & Yu Peng & Wei Xie & Haitao Liao, 2013. "Satellite Lithium-Ion Battery Remaining Cycle Life Prediction with Novel Indirect Health Indicator Extraction," Energies, MDPI, vol. 6(8), pages 1-15, July.
    3. Zhao, Jingyuan & Feng, Xuning & Wang, Junbin & Lian, Yubo & Ouyang, Minggao & Burke, Andrew F., 2023. "Battery fault diagnosis and failure prognosis for electric vehicles using spatio-temporal transformer networks," Applied Energy, Elsevier, vol. 352(C).
    4. Shrivastava, Prashant & Soon, Tey Kok & Idris, Mohd Yamani Idna Bin & Mekhilef, Saad, 2019. "Overview of model-based online state-of-charge estimation using Kalman filter family for lithium-ion batteries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 113(C), pages 1-1.
    5. Lange, Christopher & Rueß, Alexandra & Nuß, Andreas & Öchsner, Richard & März, Martin, 2020. "Dimensioning battery energy storage systems for peak shaving based on a real-time control algorithm," Applied Energy, Elsevier, vol. 280(C).
    6. Yao, Lei & Fang, Zhanpeng & Xiao, Yanqiu & Hou, Junjian & Fu, Zhijun, 2021. "An Intelligent Fault Diagnosis Method for Lithium Battery Systems Based on Grid Search Support Vector Machine," Energy, Elsevier, vol. 214(C).
    7. Liguori, Antonio & Markovic, Romana & Ferrando, Martina & Frisch, Jérôme & Causone, Francesco & van Treeck, Christoph, 2023. "Augmenting energy time-series for data-efficient imputation of missing values," Applied Energy, Elsevier, vol. 334(C).
    8. Shen, Dongxu & Lyu, Chao & Yang, Dazhi & Hinds, Gareth & Wang, Lixin, 2023. "Connection fault diagnosis for lithium-ion battery packs in electric vehicles based on mechanical vibration signals and broad belief network," Energy, Elsevier, vol. 274(C).
    9. Jeong, Jaeik & Kim, Hongseok, 2021. "DeepComp: Deep reinforcement learning based renewable energy error compensable forecasting," Applied Energy, Elsevier, vol. 294(C).
    10. Zhang, Xiang & Liu, Peng & Lin, Ni & Zhang, Zhaosheng & Wang, Zhenpo, 2023. "A novel battery abnormality detection method using interpretable Autoencoder," Applied Energy, Elsevier, vol. 330(PB).
    11. Ma, Mina & Wang, Yu & Duan, Qiangling & Wu, Tangqin & Sun, Jinhua & Wang, Qingsong, 2018. "Fault detection of the connection of lithium-ion power batteries in series for electric vehicles based on statistical analysis," Energy, Elsevier, vol. 164(C), pages 745-756.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shen, Dongxu & Lyu, Chao & Yang, Dazhi & Hinds, Gareth & Wang, Lixin, 2023. "Connection fault diagnosis for lithium-ion battery packs in electric vehicles based on mechanical vibration signals and broad belief network," Energy, Elsevier, vol. 274(C).
    2. Liu, Qiquan & Ma, Jian & Zhao, Xuan & Zhang, Kai & Meng, Dean, 2023. "Online diagnosis and prediction of power battery voltage comprehensive faults for electric vehicles based on multi-parameter characterization and improved K-means method," Energy, Elsevier, vol. 283(C).
    3. Ospina Agudelo, Brian & Zamboni, Walter & Monmasson, Eric, 2021. "Application domain extension of incremental capacity-based battery SoH indicators," Energy, Elsevier, vol. 234(C).
    4. Chang, Chun & Wang, Qiyue & Jiang, Jiuchun & Jiang, Yan & Wu, Tiezhou, 2023. "Voltage fault diagnosis of a power battery based on wavelet time-frequency diagram," Energy, Elsevier, vol. 278(PB).
    5. Wang, Shuhui & Wang, Zhenpo & Cheng, Ximing & Zhang, Zhaosheng, 2023. "A double-layer fault diagnosis strategy for electric vehicle batteries based on Gaussian mixture model," Energy, Elsevier, vol. 281(C).
    6. Shen, Dongxu & Lyu, Chao & Yang, Dazhi & Hinds, Gareth & Ma, Kai & Xu, Shaochun & Bai, Miao, 2024. "Concurrent multi-fault diagnosis of lithium-ion battery packs using random convolution kernel transformation and Gaussian process classifier," Energy, Elsevier, vol. 306(C).
    7. Sun, Zhenyu & Han, Yang & Wang, Zhenpo & Chen, Yong & Liu, Peng & Qin, Zian & Zhang, Zhaosheng & Wu, Zhiqiang & Song, Chunbao, 2022. "Detection of voltage fault in the battery system of electric vehicles using statistical analysis," Applied Energy, Elsevier, vol. 307(C).
    8. Zhang, Qisong & Yang, Lin & Guo, Wenchao & Qiang, Jiaxi & Peng, Cheng & Li, Qinyi & Deng, Zhongwei, 2022. "A deep learning method for lithium-ion battery remaining useful life prediction based on sparse segment data via cloud computing system," Energy, Elsevier, vol. 241(C).
    9. Zhou, Yuekuan, 2024. "Lifecycle battery carbon footprint analysis for battery sustainability with energy digitalization and artificial intelligence," Applied Energy, Elsevier, vol. 371(C).
    10. Lin, Mingqiang & Wu, Jian & Meng, Jinhao & Wang, Wei & Wu, Ji, 2023. "State of health estimation with attentional long short-term memory network for lithium-ion batteries," Energy, Elsevier, vol. 268(C).
    11. Shen, Dongxu & Yang, Dazhi & Lyu, Chao & Ma, Jingyan & Hinds, Gareth & Sun, Qingmin & Du, Limei & Wang, Lixin, 2024. "Multi-sensor multi-mode fault diagnosis for lithium-ion battery packs with time series and discriminative features," Energy, Elsevier, vol. 290(C).
    12. Yao, Lei & Dai, Huilin & Xiao, Yanqiu & Zhao, Changsheng & Fei, Zhigen & Cui, Guangzhen & Zhang, Longhai, 2024. "An intelligent diagnosis method for battery pack connection faults based on multiple correlation analysis and adaptive fusion decision-making," Energy, Elsevier, vol. 306(C).
    13. Shi, Haotian & Wang, Shunli & Huang, Qi & Fernandez, Carlos & Liang, Jianhong & Zhang, Mengyun & Qi, Chuangshi & Wang, Liping, 2024. "Improved electric-thermal-aging multi-physics domain coupling modeling and identification decoupling of complex kinetic processes based on timescale quantification in lithium-ion batteries," Applied Energy, Elsevier, vol. 353(PB).
    14. Deng, Zhihua & Chan, Siew Hwa & Chen, Qihong & Liu, Hao & Zhang, Liyan & Zhou, Keliang & Tong, Sirui & Fu, Zhichao, 2023. "Efficient degradation prediction of PEMFCs using ELM-AE based on fuzzy extension broad learning system," Applied Energy, Elsevier, vol. 331(C).
    15. Wang, Fu-Kwun & Amogne, Zemenu Endalamaw & Chou, Jia-Hong & Tseng, Cheng, 2022. "Online remaining useful life prediction of lithium-ion batteries using bidirectional long short-term memory with attention mechanism," Energy, Elsevier, vol. 254(PB).
    16. Jinrui Nan & Bo Deng & Wanke Cao & Jianjun Hu & Yuhua Chang & Yili Cai & Zhiwei Zhong, 2022. "Big Data-Based Early Fault Warning of Batteries Combining Short-Text Mining and Grey Correlation," Energies, MDPI, vol. 15(15), pages 1-19, July.
    17. Wenxian Duan & Chuanxue Song & Silun Peng & Feng Xiao & Yulong Shao & Shixin Song, 2020. "An Improved Gated Recurrent Unit Network Model for State-of-Charge Estimation of Lithium-Ion Battery," Energies, MDPI, vol. 13(23), pages 1-19, December.
    18. Li, Guanzheng & Li, Bin & Li, Chao & Wang, Shuai, 2023. "State-of-health rapid estimation for lithium-ion battery based on an interpretable stacking ensemble model with short-term voltage profiles," Energy, Elsevier, vol. 263(PE).
    19. Das, Kaushik & Kumar, Roushan & Krishna, Anurup, 2024. "Analyzing electric vehicle battery health performance using supervised machine learning," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PA).
    20. Li, Yi & Liu, Kailong & Foley, Aoife M. & Zülke, Alana & Berecibar, Maitane & Nanini-Maury, Elise & Van Mierlo, Joeri & Hoster, Harry E., 2019. "Data-driven health estimation and lifetime prediction of lithium-ion batteries: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 113(C), pages 1-1.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:373:y:2024:i:c:s0306261924011401. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.