IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v372y2024ics0306261924011632.html
   My bibliography  Save this article

Hierarchical MPC for building energy management: Incorporating data-driven error compensation and mitigating information asymmetry

Author

Listed:
  • Engel, Jens
  • Schmitt, Thomas
  • Rodemann, Tobias
  • Adamy, Jürgen

Abstract

The increasing adoption of renewable energy sources (RESs) in public power grids has led to a demand for more intelligent energy management systems (EMSs) in large-scale buildings. A common approach for controlling EMSs for buildings is Model Predictive Control (MPC). For large-scale buildings, hierarchical MPC schemes have been proposed, offering the advantage of scalability through problem decomposition into multiple layers. However, hierarchical schemes often suffer from information mismatch due to information asymmetry between layers, leading to suboptimal control performance. This issue is worsened by model errors inherent to the models underlying the MPC controllers. To address these challenges, we propose a hierarchical MPC approach, which includes data-driven error compensation. Additionally, to mitigate information mismatch, a one-iteration communication step is introduced between the hierarchical layers. The proposed approach comprises two layers: an aggregator layer that controls overall energy flows of the building, and a distributor layer that allocates thermal energy to individual temperature zones. The distributor may request additional thermal budget by providing the aggregator with an otherwise expected performance loss, which it can trade off accordingly. The approach is evaluated in a software-in-the-loop (SiL) simulation using a physics-based digital twin model of a multi-zone commercial building, showing notable improvements in overall control performance in comparison to a naive hierarchical baseline and similar performance to a monolithic baseline.

Suggested Citation

  • Engel, Jens & Schmitt, Thomas & Rodemann, Tobias & Adamy, Jürgen, 2024. "Hierarchical MPC for building energy management: Incorporating data-driven error compensation and mitigating information asymmetry," Applied Energy, Elsevier, vol. 372(C).
  • Handle: RePEc:eee:appene:v:372:y:2024:i:c:s0306261924011632
    DOI: 10.1016/j.apenergy.2024.123780
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261924011632
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2024.123780?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Tian, Wei & Heo, Yeonsook & de Wilde, Pieter & Li, Zhanyong & Yan, Da & Park, Cheol Soo & Feng, Xiaohang & Augenbroe, Godfried, 2018. "A review of uncertainty analysis in building energy assessment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 93(C), pages 285-301.
    2. Oldewurtel, Frauke & Sturzenegger, David & Morari, Manfred, 2013. "Importance of occupancy information for building climate control," Applied Energy, Elsevier, vol. 101(C), pages 521-532.
    3. Halhoul Merabet, Ghezlane & Essaaidi, Mohamed & Ben Haddou, Mohamed & Qolomany, Basheer & Qadir, Junaid & Anan, Muhammad & Al-Fuqaha, Ala & Abid, Mohamed Riduan & Benhaddou, Driss, 2021. "Intelligent building control systems for thermal comfort and energy-efficiency: A systematic review of artificial intelligence-assisted techniques," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).
    4. Thomas Schmitt & Tobias Rodemann & Jürgen Adamy, 2021. "The Cost of Photovoltaic Forecasting Errors in Microgrid Control with Peak Pricing," Energies, MDPI, vol. 14(9), pages 1-13, April.
    5. Lin, Dong & Zhang, Lijun & Xia, Xiaohua, 2021. "Model predictive control of a Venlo-type greenhouse system considering electrical energy, water and carbon dioxide consumption," Applied Energy, Elsevier, vol. 298(C).
    6. Khatibi, Mahmood & Rahnama, Samira & Vogler-Finck, Pierre & Dimon Bendtsen, Jan & Afshari, Alireza, 2023. "Towards designing an aggregator to activate the energy flexibility of multi-zone buildings using a hierarchical model-based scheme," Applied Energy, Elsevier, vol. 333(C).
    7. Di Natale, L. & Svetozarevic, B. & Heer, P. & Jones, C.N., 2023. "Towards scalable physically consistent neural networks: An application to data-driven multi-zone thermal building models," Applied Energy, Elsevier, vol. 340(C).
    8. Di Natale, L. & Svetozarevic, B. & Heer, P. & Jones, C.N., 2022. "Physically Consistent Neural Networks for building thermal modeling: Theory and analysis," Applied Energy, Elsevier, vol. 325(C).
    9. Lankeshwara, Gayan & Sharma, Rahul & Yan, Ruifeng & Saha, Tapan K., 2022. "A hierarchical control scheme for residential air-conditioning loads to provide real-time market services under uncertainties," Energy, Elsevier, vol. 250(C).
    10. Thilker, Christian Ankerstjerne & Madsen, Henrik & Jørgensen, John Bagterp, 2021. "Advanced forecasting and disturbance modelling for model predictive control of smart energy systems," Applied Energy, Elsevier, vol. 292(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Guo, Yanhua & Wang, Ningbo & Shao, Shuangquan & Huang, Congqi & Zhang, Zhentao & Li, Xiaoqiong & Wang, Youdong, 2024. "A review on hybrid physics and data-driven modeling methods applied in air source heat pump systems for energy efficiency improvement," Renewable and Sustainable Energy Reviews, Elsevier, vol. 204(C).
    2. Zhan, Sicheng & Lei, Yue & Jin, Yuan & Yan, Da & Chong, Adrian, 2022. "Impact of occupant related data on identification and model predictive control for buildings," Applied Energy, Elsevier, vol. 323(C).
    3. Zhan, Sicheng & Chong, Adrian, 2021. "Data requirements and performance evaluation of model predictive control in buildings: A modeling perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 142(C).
    4. Xu, Wenjie & Svetozarevic, Bratislav & Di Natale, Loris & Heer, Philipp & Jones, Colin N., 2024. "Data-driven adaptive building thermal controller tuning with constraints: A primal–dual contextual Bayesian optimization approach," Applied Energy, Elsevier, vol. 358(C).
    5. Zhou, Yuekuan & Zheng, Siqian, 2020. "Uncertainty study on thermal and energy performances of a deterministic parameters based optimal aerogel glazing system using machine-learning method," Energy, Elsevier, vol. 193(C).
    6. Lin Liu & Jin Yuan & Liang Gong & Xing Wang & Xuemei Liu, 2022. "Dynamic Fresh Weight Prediction of Substrate-Cultivated Lettuce Grown in a Solar Greenhouse Based on Phenotypic and Environmental Data," Agriculture, MDPI, vol. 12(11), pages 1-16, November.
    7. Tsai, I-Chun, 2024. "A wise investment by urban governments: Evidence from intelligent sports facilities," Journal of Asian Economics, Elsevier, vol. 92(C).
    8. Zhao, Jing & Yang, Zilan & Shi, Linyu & Liu, Dehan & Li, Haonan & Mi, Yumiao & Wang, Hongbin & Feng, Meili & Hutagaol, Timothy Joseph, 2024. "Photovoltaic capacity dynamic tracking model predictive control strategy of air-conditioning systems with consideration of flexible loads," Applied Energy, Elsevier, vol. 356(C).
    9. Gao, Yuan & Miyata, Shohei & Akashi, Yasunori, 2022. "Interpretable deep learning models for hourly solar radiation prediction based on graph neural network and attention," Applied Energy, Elsevier, vol. 321(C).
    10. Song, Kwonsik & Kim, Sooyoung & Park, Moonseo & Lee, Hyun-Soo, 2017. "Energy efficiency-based course timetabling for university buildings," Energy, Elsevier, vol. 139(C), pages 394-405.
    11. Hu, Guoqing & You, Fengqi, 2024. "AI-enabled cyber-physical-biological systems for smart energy management and sustainable food production in a plant factory," Applied Energy, Elsevier, vol. 356(C).
    12. Sun, Kaiyu & Hong, Tianzhen & Taylor-Lange, Sarah C. & Piette, Mary Ann, 2016. "A pattern-based automated approach to building energy model calibration," Applied Energy, Elsevier, vol. 165(C), pages 214-224.
    13. Deb, C. & Gelder, L.V. & Spiekman, M. & Pandraud, Guillaume & Jack, R. & Fitton, R., 2021. "Measuring the heat transfer coefficient (HTC) in buildings: A stakeholder's survey," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).
    14. Amin, Amin & Mourshed, Monjur, 2024. "Community stochastic domestic electricity forecasting," Applied Energy, Elsevier, vol. 355(C).
    15. Liang, Xinbin & Zhu, Xu & Chen, Siliang & Jin, Xinqiao & Xiao, Fu & Du, Zhimin, 2023. "Physics-constrained cooperative learning-based reference models for smart management of chillers considering extrapolation scenarios," Applied Energy, Elsevier, vol. 349(C).
    16. Dai, Mingkun & Li, Hangxin & Wang, Shengwei, 2023. "A reinforcement learning-enabled iterative learning control strategy of air-conditioning systems for building energy saving by shortening the morning start period," Applied Energy, Elsevier, vol. 334(C).
    17. Charalampos Rafail Lazaridis & Iakovos Michailidis & Georgios Karatzinis & Panagiotis Michailidis & Elias Kosmatopoulos, 2024. "Evaluating Reinforcement Learning Algorithms in Residential Energy Saving and Comfort Management," Energies, MDPI, vol. 17(3), pages 1-33, January.
    18. Feng, Yanxiao & Liu, Shichao & Wang, Julian & Yang, Jing & Jao, Ying-Ling & Wang, Nan, 2022. "Data-driven personal thermal comfort prediction: A literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
    19. Lee, Junghun & Yoo, Seunghwan & Kim, Jonghun & Song, Doosam & Jeong, Hakgeun, 2018. "Improvements to the customer baseline load (CBL) using standard energy consumption considering energy efficiency and demand response," Energy, Elsevier, vol. 144(C), pages 1052-1063.
    20. Amjad Almusaed & Ibrahim Yitmen & Asaad Almssad, 2023. "Reviewing and Integrating AEC Practices into Industry 6.0: Strategies for Smart and Sustainable Future-Built Environments," Sustainability, MDPI, vol. 15(18), pages 1-27, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:372:y:2024:i:c:s0306261924011632. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.