IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v363y2024ics0306261924004252.html
   My bibliography  Save this article

Sensitivity analysis of multiple time-scale building energy using Bayesian adaptive spline surfaces

Author

Listed:
  • Zhang, Hu
  • Tian, Wei
  • Tan, Jingyuan
  • Yin, Juchao
  • Fu, Xing

Abstract

Sensitivity analysis has been widely used in building energy analysis to identify key variables influencing building energy and carbon emissions. However, most previous studies only focus on the single time scale energy use of buildings when conducting sensitivity analysis. The multiple time-scale sensitivity analysis would lead to increased complexity and challenges in building energy analysis. This paper proposes a new systematical procedure for global variance-based sensitivity analysis of multiple time-scale energy use of buildings. A case study of an office building is used to demonstrate the application of this approach using the Bayesian adaptive spline surface (BASS) models at three different time scales (annual, monthly, and daily). The results indicate that the procedure proposed here can provide fast and reliable sensitivity results for the multiple time-scale building energy assessment. The BASS learning models have the advantages of high predictive performance and the fast computation of sensitivity indicators in a closed form without Monte Carlo integrals. The application of principal component analysis can deal with the highly correlated multi-output energy use at a smaller time scale, which can further reduce computational costs. Moreover, the sensitivity analysis at the different time scales can provide new insights into energy characteristics due to the intrinsic variations of weather conditions. This systematical procedure can provide useful guidance for the multiple time-scale model calibration and multi-step ahead predictions of buildings. Moreover, the method proposed here can be extended to the sensitivity analysis of energy use in different time scales (sub-hourly, hourly, or daily) for other energy systems (such as PV, solar thermal, and wind).

Suggested Citation

  • Zhang, Hu & Tian, Wei & Tan, Jingyuan & Yin, Juchao & Fu, Xing, 2024. "Sensitivity analysis of multiple time-scale building energy using Bayesian adaptive spline surfaces," Applied Energy, Elsevier, vol. 363(C).
  • Handle: RePEc:eee:appene:v:363:y:2024:i:c:s0306261924004252
    DOI: 10.1016/j.apenergy.2024.123042
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261924004252
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2024.123042?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Devin Francom & Bruno Sansó & Vera Bulaevskaya & Donald Lucas & Matthew Simpson, 2019. "Inferring Atmospheric Release Characteristics in a Large Computer Experiment Using Bayesian Adaptive Splines," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 114(528), pages 1450-1465, October.
    2. Tian, Wei & Heo, Yeonsook & de Wilde, Pieter & Li, Zhanyong & Yan, Da & Park, Cheol Soo & Feng, Xiaohang & Augenbroe, Godfried, 2018. "A review of uncertainty analysis in building energy assessment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 93(C), pages 285-301.
    3. Jung, WoongHee & Taflanidis, Alexandros A., 2023. "Efficient global sensitivity analysis for high-dimensional outputs combining data-driven probability models and dimensionality reduction," Reliability Engineering and System Safety, Elsevier, vol. 231(C).
    4. Shang, Yue & Nogal, Maria & Teixeira, Rui & Wolfert, A.R. (Rogier) M., 2024. "Extreme-oriented sensitivity analysis using sparse polynomial chaos expansion. Application to train–track–bridge systems," Reliability Engineering and System Safety, Elsevier, vol. 243(C).
    5. Kevin F. Forbes, 2023. "CO2 has significant implications for hourly ambient temperature: Evidence from Hawaii," Environmetrics, John Wiley & Sons, Ltd., vol. 34(6), September.
    6. Liu, Peng & Justo Alonso, Maria & Mathisen, Hans Martin, 2023. "Global sensitivity analysis and optimal design of heat recovery ventilation for zero emission buildings," Applied Energy, Elsevier, vol. 329(C).
    7. Zhu, Chuanqi & Tian, Wei & Yin, Baoquan & Li, Zhanyong & Shi, Jiaxin, 2020. "Uncertainty calibration of building energy models by combining approximate Bayesian computation and machine learning algorithms," Applied Energy, Elsevier, vol. 268(C).
    8. Prataviera, Enrico & Vivian, Jacopo & Lombardo, Giulia & Zarrella, Angelo, 2022. "Evaluation of the impact of input uncertainty on urban building energy simulations using uncertainty and sensitivity analysis," Applied Energy, Elsevier, vol. 311(C).
    9. Li, Guannan & Li, Fan & Ahmad, Tanveer & Liu, Jiangyan & Li, Tao & Fang, Xi & Wu, Yubei, 2022. "Performance evaluation of sequence-to-sequence-Attention model for short-term multi-step ahead building energy predictions," Energy, Elsevier, vol. 259(C).
    10. Tian, Wei, 2013. "A review of sensitivity analysis methods in building energy analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 20(C), pages 411-419.
    11. Neale, John & Shamsi, Mohammad Haris & Mangina, Eleni & Finn, Donal & O’Donnell, James, 2022. "Accurate identification of influential building parameters through an integration of global sensitivity and feature selection techniques," Applied Energy, Elsevier, vol. 315(C).
    12. Gauch, H.L. & Dunant, C.F. & Hawkins, W. & Cabrera Serrenho, A., 2023. "What really matters in multi-storey building design? A simultaneous sensitivity study of embodied carbon, construction cost, and operational energy," Applied Energy, Elsevier, vol. 333(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Su, Ziyi & Li, Xiaofeng, 2022. "Extraction of key parameters and simplification of sub-system energy models using sensitivity analysis in subway stations," Energy, Elsevier, vol. 261(PA).
    2. Wang, Ran & Lu, Shilei & Feng, Wei, 2020. "Impact of adjustment strategies on building design process in different climates oriented by multiple performance," Applied Energy, Elsevier, vol. 266(C).
    3. Aurora Greta Ruggeri & Laura Gabrielli & Massimiliano Scarpa, 2020. "Energy Retrofit in European Building Portfolios: A Review of Five Key Aspects," Sustainability, MDPI, vol. 12(18), pages 1-38, September.
    4. Chuat, Arthur & Terrier, Cédric & Schnidrig, Jonas & Maréchal, François, 2024. "Identification of typical district configurations: A two-step global sensitivity analysis framework," Energy, Elsevier, vol. 296(C).
    5. Hou, D. & Hassan, I.G. & Wang, L., 2021. "Review on building energy model calibration by Bayesian inference," Renewable and Sustainable Energy Reviews, Elsevier, vol. 143(C).
    6. Scarpa, Federico & Tagliafico, Luca A. & Bianco, Vincenzo, 2021. "Financial and energy performance analysis of efficiency measures in residential buildings. A probabilistic approach," Energy, Elsevier, vol. 236(C).
    7. Zhan, Sicheng & Chong, Adrian, 2021. "Data requirements and performance evaluation of model predictive control in buildings: A modeling perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 142(C).
    8. Braga, Joaquim A.P. & Costa, João N. & Ambrósio, Jorge & Frey, Daniel & Andrade, António R., 2024. "Robust assessment of railway vehicle safety risks in operation using a proposed data-driven wheel profile generation approach: Design of computer experiments and surrogate models," Reliability Engineering and System Safety, Elsevier, vol. 249(C).
    9. Gatt, Damien & Yousif, Charles & Cellura, Maurizio & Camilleri, Liberato & Guarino, Francesco, 2020. "Assessment of building energy modelling studies to meet the requirements of the new Energy Performance of Buildings Directive," Renewable and Sustainable Energy Reviews, Elsevier, vol. 127(C).
    10. Saryazdi, Seyed mohammad Ebrahimi & Etemad, Alireza & Shafaat, Ali & Bahman, Ammar M., 2024. "A comprehensive review and sensitivity analysis of the factors affecting the performance of buildings equipped with Variable Refrigerant Flow system in Middle East climates," Renewable and Sustainable Energy Reviews, Elsevier, vol. 191(C).
    11. Zhu, Chuanqi & Tian, Wei & Yin, Baoquan & Li, Zhanyong & Shi, Jiaxin, 2020. "Uncertainty calibration of building energy models by combining approximate Bayesian computation and machine learning algorithms," Applied Energy, Elsevier, vol. 268(C).
    12. Abokersh, Mohamed Hany & Spiekman, Marleen & Vijlbrief, Olav & van Goch, T.A.J. & Vallès, Manel & Boer, Dieter, 2021. "A real-time diagnostic tool for evaluating the thermal performance of nearly zero energy buildings," Applied Energy, Elsevier, vol. 281(C).
    13. Zhou, Yuekuan & Zheng, Siqian, 2020. "Uncertainty study on thermal and energy performances of a deterministic parameters based optimal aerogel glazing system using machine-learning method," Energy, Elsevier, vol. 193(C).
    14. F. Wang & G. H. Huang & Y. Fan & Y. P. Li, 2020. "Robust Subsampling ANOVA Methods for Sensitivity Analysis of Water Resource and Environmental Models," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 34(10), pages 3199-3217, August.
    15. Tian, Wei & Song, Jitian & Li, Zhanyong & de Wilde, Pieter, 2014. "Bootstrap techniques for sensitivity analysis and model selection in building thermal performance analysis," Applied Energy, Elsevier, vol. 135(C), pages 320-328.
    16. Nguyen, Phong T.T. & Manuel, Lance, 2024. "Uncertainty quantification in low-probability response estimation using sliced inverse regression and polynomial chaos expansion," Reliability Engineering and System Safety, Elsevier, vol. 242(C).
    17. Lei, Nuoa & Masanet, Eric, 2020. "Statistical analysis for predicting location-specific data center PUE and its improvement potential," Energy, Elsevier, vol. 201(C).
    18. Yuan, Jun & Nian, Victor & Su, Bin & Meng, Qun, 2017. "A simultaneous calibration and parameter ranking method for building energy models," Applied Energy, Elsevier, vol. 206(C), pages 657-666.
    19. Diana D’Agostino & Martina Di Mascolo & Federico Minelli & Francesco Minichiello, 2024. "A New Tailored Approach to Calculate the Optimal Number of Outdoor Air Changes in School Building HVAC Systems in the Post-COVID-19 Era," Energies, MDPI, vol. 17(11), pages 1-36, June.
    20. Sun, Kaiyu & Hong, Tianzhen & Taylor-Lange, Sarah C. & Piette, Mary Ann, 2016. "A pattern-based automated approach to building energy model calibration," Applied Energy, Elsevier, vol. 165(C), pages 214-224.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:363:y:2024:i:c:s0306261924004252. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.