IDEAS home Printed from https://ideas.repec.org/a/eee/enepol/v62y2013icp473-483.html
   My bibliography  Save this article

A sequential Monte Carlo model of the combined GB gas and electricity network

Author

Listed:
  • Chaudry, Modassar
  • Wu, Jianzhong
  • Jenkins, Nick

Abstract

A Monte Carlo model of the combined GB gas and electricity network was developed to determine the reliability of the energy infrastructure. The model integrates the gas and electricity network into a single sequential Monte Carlo simulation. The model minimises the combined costs of the gas and electricity network, these include gas supplies, gas storage operation and electricity generation. The Monte Carlo model calculates reliability indices such as loss of load probability and expected energy unserved for the combined gas and electricity network. The intention of this tool is to facilitate reliability analysis of integrated energy systems. Applications of this tool are demonstrated through a case study that quantifies the impact on the reliability of the GB gas and electricity network given uncertainties such as wind variability, gas supply availability and outages to energy infrastructure assets. Analysis is performed over a typical midwinter week on a hypothesised GB gas and electricity network in 2020 that meets European renewable energy targets. The efficacy of doubling GB gas storage capacity on the reliability of the energy system is assessed. The results highlight the value of greater gas storage facilities in enhancing the reliability of the GB energy system given various energy uncertainties.

Suggested Citation

  • Chaudry, Modassar & Wu, Jianzhong & Jenkins, Nick, 2013. "A sequential Monte Carlo model of the combined GB gas and electricity network," Energy Policy, Elsevier, vol. 62(C), pages 473-483.
  • Handle: RePEc:eee:enepol:v:62:y:2013:i:c:p:473-483
    DOI: 10.1016/j.enpol.2013.08.011
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0301421513008045
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.enpol.2013.08.011?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Qadrdan, Meysam & Chaudry, Modassar & Wu, Jianzhong & Jenkins, Nick & Ekanayake, Janaka, 2010. "Impact of a large penetration of wind generation on the GB gas network," Energy Policy, Elsevier, vol. 38(10), pages 5684-5695, October.
    2. McCarthy, Ryan W. & Ogden, Joan M. & Sperling, Daniel, 2007. "Assessing reliability in energy supply systems," Energy Policy, Elsevier, vol. 35(4), pages 2151-2162, April.
    3. Skea, Jim & Chaudry, Modassar & Wang, Xinxin, 2012. "The role of gas infrastructure in promoting UK energy security," Energy Policy, Elsevier, vol. 43(C), pages 202-213.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ameli, Hossein & Qadrdan, Meysam & Strbac, Goran, 2017. "Value of gas network infrastructure flexibility in supporting cost effective operation of power systems," Applied Energy, Elsevier, vol. 202(C), pages 571-580.
    2. Daniel Scamman & Baltazar Solano-Rodríguez & Steve Pye & Lai Fong Chiu & Andrew Z. P. Smith & Tiziano Gallo Cassarino & Mark Barrett & Robert Lowe, 2020. "Heat Decarbonisation Modelling Approaches in the UK: An Energy System Architecture Perspective," Energies, MDPI, vol. 13(8), pages 1-28, April.
    3. Wang, Yongli & Wang, Yudong & Huang, Yujing & Yang, Jiale & Ma, Yuze & Yu, Haiyang & Zeng, Ming & Zhang, Fuwei & Zhang, Yanfu, 2019. "Operation optimization of regional integrated energy system based on the modeling of electricity-thermal-natural gas network," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    4. Pellegrino, Sandro & Lanzini, Andrea & Leone, Pierluigi, 2017. "Greening the gas network – The need for modelling the distributed injection of alternative fuels," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 266-286.
    5. Foley, A.M. & Ó Gallachóir, B.P. & McKeogh, E.J. & Milborrow, D. & Leahy, P.G., 2013. "Addressing the technical and market challenges to high wind power integration in Ireland," Renewable and Sustainable Energy Reviews, Elsevier, vol. 19(C), pages 692-703.
    6. Jin, Xiaolong & Mu, Yunfei & Jia, Hongjie & Wu, Jianzhong & Xu, Xiandong & Yu, Xiaodan, 2016. "Optimal day-ahead scheduling of integrated urban energy systems," Applied Energy, Elsevier, vol. 180(C), pages 1-13.
    7. Schipperus, Ouren T. & Mulder, Machiel, 2015. "The effectiveness of policies to transform a gas-exporting country into a gas-transit country: The case of The Netherlands," Energy Policy, Elsevier, vol. 84(C), pages 117-127.
    8. Hughes, Larry & Ranjan, Ashish, 2013. "Event-related stresses in energy systems and their effects on energy security," Energy, Elsevier, vol. 59(C), pages 413-421.
    9. Flora, Rui & Marques, António Cardoso & Fuinhas, José Alberto, 2014. "Wind power idle capacity in a panel of European countries," Energy, Elsevier, vol. 66(C), pages 823-830.
    10. Yanbo Chen & Yangzi Wang & Jin Ma, 2018. "Multi-Objective Optimal Energy Management for the Integrated Electrical and Natural Gas Network with Combined Cooling, Heat and Power Plants," Energies, MDPI, vol. 11(4), pages 1-20, March.
    11. Qadrdan, Meysam & Ameli, Hossein & Strbac, Goran & Jenkins, Nicholas, 2017. "Efficacy of options to address balancing challenges: Integrated gas and electricity perspectives," Applied Energy, Elsevier, vol. 190(C), pages 181-190.
    12. Skea, Jim & Chaudry, Modassar & Wang, Xinxin, 2012. "The role of gas infrastructure in promoting UK energy security," Energy Policy, Elsevier, vol. 43(C), pages 202-213.
    13. Andrea Antenucci & Giovanni Sansavini, 2018. "Adequacy and security analysis of interdependent electric and gas networks," Journal of Risk and Reliability, , vol. 232(2), pages 121-139, April.
    14. Holley, Cameron & Lecavalier, Emma, 2017. "Energy governance, energy security and environmental sustainability: A case study from Hong Kong," Energy Policy, Elsevier, vol. 108(C), pages 379-389.
    15. Antenucci, Andrea & Sansavini, Giovanni, 2019. "Extensive CO2 recycling in power systems via Power-to-Gas and network storage," Renewable and Sustainable Energy Reviews, Elsevier, vol. 100(C), pages 33-43.
    16. Zhao, Chunfu & Chen, Bin, 2014. "China’s oil security from the supply chain perspective: A review," Applied Energy, Elsevier, vol. 136(C), pages 269-279.
    17. Oduro, Richard A. & Taylor, Peter G., 2023. "Future pathways for energy networks: A review of international experiences in high income countries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 171(C).
    18. Terrence W. K. Mak & Pascal Van Hentenryck & Anatoly Zlotnik & Russell Bent, 2019. "Dynamic Compressor Optimization in Natural Gas Pipeline Systems," INFORMS Journal on Computing, INFORMS, vol. 31(1), pages 40-65, February.
    19. Franki, Vladimir & Višković, Alfredo, 2021. "Multi-criteria decision support: A case study of Southeast Europe power systems," Utilities Policy, Elsevier, vol. 73(C).
    20. Devlin, Joseph & Li, Kang & Higgins, Paraic & Foley, Aoife, 2016. "The importance of gas infrastructure in power systems with high wind power penetrations," Applied Energy, Elsevier, vol. 167(C), pages 294-304.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:enepol:v:62:y:2013:i:c:p:473-483. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/enpol .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.