IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v367y2024ics0306261924007633.html
   My bibliography  Save this article

A multi-period topology and design optimization approach for district heating networks

Author

Listed:
  • Wack, Yannick
  • Sollich, Martin
  • Salenbien, Robbe
  • Diriken, Jan
  • Baelmans, Martine
  • Blommaert, Maarten

Abstract

The transition to modern, low-carbon district heating creates a growing need for scalable, automated design tools that accurately capture the spatial and temporal details of heating network operations. This paper presents an automated design approach for the optimal design of district heating networks that combines scalable density-based topology optimization with a multi-period approach. In this way, temporal variations in demand, supply, and heat losses can be taken into account while optimizing the network design based on a nonlinear physics model. The transition of the automated design approach from worst-case to multi-period shows a design progression from separate branched networks to a single integrated meshed network topology connecting all producers. These integrated topologies emerge without imposing such structures a priori. They increase network connectivity, and allow for more flexible shifting of heat loads between different producers and heat consumers, resulting in more cost-effective use of heat. In a case study, this integrated design resulted in an increase in waste heat share of 42.8 % and a subsequent reduction in project cost of 17.9 %. We show how producer unavailability can be accounted for in the automated design at the cost of a 3.1 % increase in the cost of backup capacity. The resulting optimized network designs of this approach connect multiple low temperature heat sources in a single integrated network achieving high waste heat utilization and redundancy, highlighting the applicability of the approach to next-generation district heating networks.

Suggested Citation

  • Wack, Yannick & Sollich, Martin & Salenbien, Robbe & Diriken, Jan & Baelmans, Martine & Blommaert, Maarten, 2024. "A multi-period topology and design optimization approach for district heating networks," Applied Energy, Elsevier, vol. 367(C).
  • Handle: RePEc:eee:appene:v:367:y:2024:i:c:s0306261924007633
    DOI: 10.1016/j.apenergy.2024.123380
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261924007633
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2024.123380?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:367:y:2024:i:c:s0306261924007633. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.