IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v302y2024ics0360544224016165.html
   My bibliography  Save this article

A two-phase nonlinear optimization method for routing and sizing district heating systems

Author

Listed:
  • Lambert, Jerry
  • Spliethoff, Hartmut

Abstract

This paper presents a method to find the optimal topology, pipe sizing, and operational parameters of a district heating system under consideration of one design point. The current high costs of district heating systems set limits regarding the minimum heat demand density required for economic network expansions. Optimized routing with ideal pipe sizing and optimal operating parameters offers a potential for cost reduction. Therefore, this paper introduces a new two-phase method for district heating network expansion planning. This method consists of consecutive optimizations, starting with a mixed-integer linear programming followed by a nonlinear optimization. During the mixed-integer linear programming, the district heating system is optimized with continuous diameters, and the nonlinear pressure and temperature dependencies must be linearized. The resulting topology and the continuous diameters are afterward handed over to a nonlinear sparse sequential quadratic programming. The continuous diameters are discretized using a numerical continuation strategy that gradually forces the continuous diameter variables into discrete diameter choices. As a proof of concept, the district heating system for a small town with 400 consumers is optimized and analyzed. The two-phase optimization is performed in 251.68sec, and in most cases, discrete or near discrete diameters are achieved in a nonlinear continuous optimization.

Suggested Citation

  • Lambert, Jerry & Spliethoff, Hartmut, 2024. "A two-phase nonlinear optimization method for routing and sizing district heating systems," Energy, Elsevier, vol. 302(C).
  • Handle: RePEc:eee:energy:v:302:y:2024:i:c:s0360544224016165
    DOI: 10.1016/j.energy.2024.131843
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544224016165
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2024.131843?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:302:y:2024:i:c:s0360544224016165. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.