IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v365y2024ics030626192400610x.html
   My bibliography  Save this article

Multi-year analysis of physical interactions between solar PV arrays and underlying soil-plant complex in vegetated utility-scale systems

Author

Listed:
  • Choi, Chong Seok
  • Macknick, Jordan
  • McCall, James
  • Bertel, Rebecca
  • Ravi, Sujith

Abstract

Concerns over the land use changes impacts of solar photovoltaic (PV) development are increasing as PV energy development expands. Co-locating utility-scale solar energy with vegetation may maintain or rehabilitate the land's ability to provide ecosystem services. Previous studies have shown that vegetation under and around the panels may improve the performance of the co-located PV and that PV may create a favorable environment for the growth of vegetation. While there have been some pilot-scale experiments, the existence and magnitude of these benefits of vegetation has not been confirmed in a utility-scale PV facility over multiple years. In this study we use power output data coupled with microclimatic measurements in temperate climates to assess these potential benefits. This study combines multi-year microclimatic measurements to analyze the physical interactions between PV arrays and the underlying soil-vegetation system in three utility-scale PV facilities in Minnesota, USA. No significant cooling of PV panels or increased power production was observed in PV arrays with underlying vegetation. Fine soil particle fraction was the highest in soils within PV arrays with the vegetation which was attributable to the lowest wind speeds from the compounding suppression of wind by vegetation and PV arrays. Soil moisture and soil nutrient response to re-vegetation varied between PV facilities, which could be attributed to differing soil texture. No statistically significant vegetation-driven panel cooling was observed in this climate. This finding prompts a need for site-specific studies to identify contributing factors for environmental co-benefits in co-located systems.

Suggested Citation

  • Choi, Chong Seok & Macknick, Jordan & McCall, James & Bertel, Rebecca & Ravi, Sujith, 2024. "Multi-year analysis of physical interactions between solar PV arrays and underlying soil-plant complex in vegetated utility-scale systems," Applied Energy, Elsevier, vol. 365(C).
  • Handle: RePEc:eee:appene:v:365:y:2024:i:c:s030626192400610x
    DOI: 10.1016/j.apenergy.2024.123227
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S030626192400610X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2024.123227?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Dupraz, C. & Marrou, H. & Talbot, G. & Dufour, L. & Nogier, A. & Ferard, Y., 2011. "Combining solar photovoltaic panels and food crops for optimising land use: Towards new agrivoltaic schemes," Renewable Energy, Elsevier, vol. 36(10), pages 2725-2732.
    2. Beckman, Jayson & Xiarchos, Irene M., 2013. "Why are Californian farmers adopting more (and larger) renewable energy operations?," Renewable Energy, Elsevier, vol. 55(C), pages 322-330.
    3. Walston, Leroy J. & Li, Yudi & Hartmann, Heidi M. & Macknick, Jordan & Hanson, Aaron & Nootenboom, Chris & Lonsdorf, Eric & Hellmann, Jessica, 2021. "Modeling the ecosystem services of native vegetation management practices at solar energy facilities in the Midwestern United States," Ecosystem Services, Elsevier, vol. 47(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yanay Farja & Mariusz Maciejczak, 2021. "Economic Implications of Agricultural Land Conversion to Solar Power Production," Energies, MDPI, vol. 14(19), pages 1-15, September.
    2. Krexner, T. & Bauer, A. & Gronauer, A. & Mikovits, C. & Schmidt, J. & Kral, I., 2024. "Environmental life cycle assessment of a stilted and vertical bifacial crop-based agrivoltaic multi land-use system and comparison with a mono land-use of agricultural land," Renewable and Sustainable Energy Reviews, Elsevier, vol. 196(C).
    3. Vivar, M. & H, Sharon & Fuentes, M., 2024. "Photovoltaic system adoption in water related technologies – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PB).
    4. Vaidyanathan, Geeta & Sankaranarayanan, Ramani & Yap, Nonita T., 2019. "Bridging the chasm – Diffusion of energy innovations in poor infrastructure starved communities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 99(C), pages 243-255.
    5. Sahoo, Somadutta & Zuidema, Christian & van Stralen, Joost N.P. & Sijm, Jos & Faaij, André, 2022. "Detailed spatial analysis of renewables’ potential and heat: A study of Groningen Province in the northern Netherlands," Applied Energy, Elsevier, vol. 318(C).
    6. Schindele, Stephan & Trommsdorff, Maximilian & Schlaak, Albert & Obergfell, Tabea & Bopp, Georg & Reise, Christian & Braun, Christian & Weselek, Axel & Bauerle, Andrea & Högy, Petra & Goetzberger, Ado, 2020. "Implementation of agrophotovoltaics: Techno-economic analysis of the price-performance ratio and its policy implications," Applied Energy, Elsevier, vol. 265(C).
    7. Fikru, Mahelet G. & Gautier, Luis, 2023. "Consumption and production of cleaner energy by prosumers," Energy Economics, Elsevier, vol. 124(C).
    8. Amaducci, Stefano & Yin, Xinyou & Colauzzi, Michele, 2018. "Agrivoltaic systems to optimise land use for electric energy production," Applied Energy, Elsevier, vol. 220(C), pages 545-561.
    9. L. Mundaca & H. Moncreiff, 2021. "New Perspectives on Green Energy Defaults," Journal of Consumer Policy, Springer, vol. 44(3), pages 357-383, September.
    10. Xue, Jinlin, 2017. "Photovoltaic agriculture - New opportunity for photovoltaic applications in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 1-9.
    11. Daniel Matulić & Željko Andabaka & Sanja Radman & Goran Fruk & Josip Leto & Jakša Rošin & Mirta Rastija & Ivana Varga & Tea Tomljanović & Hrvoje Čeprnja & Marko Karoglan, 2023. "Agrivoltaics and Aquavoltaics: Potential of Solar Energy Use in Agriculture and Freshwater Aquaculture in Croatia," Agriculture, MDPI, vol. 13(7), pages 1-26, July.
    12. Hassanien, Reda Hassanien Emam & Li, Ming & Yin, Fang, 2018. "The integration of semi-transparent photovoltaics on greenhouse roof for energy and plant production," Renewable Energy, Elsevier, vol. 121(C), pages 377-388.
    13. Dias, Luís & Gouveia, João Pedro & Lourenço, Paulo & Seixas, Júlia, 2019. "Interplay between the potential of photovoltaic systems and agricultural land use," Land Use Policy, Elsevier, vol. 81(C), pages 725-735.
    14. Gorjian, Shiva & Bousi, Erion & Özdemir, Özal Emre & Trommsdorff, Max & Kumar, Nallapaneni Manoj & Anand, Abhishek & Kant, Karunesh & Chopra, Shauhrat S., 2022. "Progress and challenges of crop production and electricity generation in agrivoltaic systems using semi-transparent photovoltaic technology," Renewable and Sustainable Energy Reviews, Elsevier, vol. 158(C).
    15. Kim, Sumin & Kim, Sojung, 2023. "Optimization of the design of an agrophotovoltaic system in future climate conditions in South Korea," Renewable Energy, Elsevier, vol. 206(C), pages 928-938.
    16. Elamri, Y. & Cheviron, B. & Lopez, J.-M. & Dejean, C. & Belaud, G., 2018. "Water budget and crop modelling for agrivoltaic systems: Application to irrigated lettuces," Agricultural Water Management, Elsevier, vol. 208(C), pages 440-453.
    17. Lobaccaro, G. & Croce, S. & Lindkvist, C. & Munari Probst, M.C. & Scognamiglio, A. & Dahlberg, J. & Lundgren, M. & Wall, M., 2019. "A cross-country perspective on solar energy in urban planning: Lessons learned from international case studies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 108(C), pages 209-237.
    18. Prehoda, Emily W. & Pearce, Joshua M., 2017. "Potential lives saved by replacing coal with solar photovoltaic electricity production in the U.S," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 710-715.
    19. La Notte, Luca & Giordano, Lorena & Calabrò, Emanuele & Bedini, Roberto & Colla, Giuseppe & Puglisi, Giovanni & Reale, Andrea, 2020. "Hybrid and organic photovoltaics for greenhouse applications," Applied Energy, Elsevier, vol. 278(C).
    20. Joshua M. Pearce, 2022. "Agrivoltaics in Ontario Canada: Promise and Policy," Sustainability, MDPI, vol. 14(5), pages 1-20, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:365:y:2024:i:c:s030626192400610x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.