IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v324y2022ics030626192201011x.html
   My bibliography  Save this article

Frequency response function method for dynamic gas flow modeling and its application in pipeline system leakage diagnosis

Author

Listed:
  • Li, Xia
  • Zhao, Tian
  • Sun, Qing-Han
  • Chen, Qun

Abstract

Timely diagnosing leakages is significant for the safety and reliability of gas pipeline systems, where an efficient and accurate modeling and solution method is critical to identify the leakage rate and location. Here, a frequency response function-based modeling method for dynamic gas flow in pipelines is proposed. Based on the frequency-domain flow resistance of pipelines and Fourier Transform, original dynamic flow model is transformed into the frequency response function model consisting of linear lumped transmission constraints, nonlinear frequency response function, and nonlinear pipeline resistance characteristics, which are efficiently solved according to their different mathematical properties. Dynamic simulation cases show the proposed modeling and solution method greatly improves the computational efficiency keeping the accuracy. Besides, taking the difference between measurements and simulation results under leakage condition as objective, an iterative bilayer optimization algorithm is proposed based on the mathematical categorization of system constraints to efficiently diagnose leakages. Four leakage diagnosis cases in single pipeline and pipeline network with measurement noise and transient boundary conditions are studied to validate the leakage diagnosis method. Absolute location errors in the results are all within 1%, demonstrating the accuracy and robustness of the proposed method for single leakages and multiple leakages occurring successively or simultaneously.

Suggested Citation

  • Li, Xia & Zhao, Tian & Sun, Qing-Han & Chen, Qun, 2022. "Frequency response function method for dynamic gas flow modeling and its application in pipeline system leakage diagnosis," Applied Energy, Elsevier, vol. 324(C).
  • Handle: RePEc:eee:appene:v:324:y:2022:i:c:s030626192201011x
    DOI: 10.1016/j.apenergy.2022.119720
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S030626192201011X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2022.119720?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yang, Jingwei & Zhang, Ning & Botterud, Audun & Kang, Chongqing, 2020. "Situation awareness of electricity-gas coupled systems with a multi-port equivalent gas network model," Applied Energy, Elsevier, vol. 258(C).
    2. Zhao, Tian & Chen, Xi & He, Ke-Lun & Chen, Qun, 2021. "A hierarchical and categorized algorithm for efficient and robust simulation of thermal systems based on the heat current method," Energy, Elsevier, vol. 215(PA).
    3. Zhang, Yachao & Liu, Yan & Shu, Shengwen & Zheng, Feng & Huang, Zhanghao, 2021. "A data-driven distributionally robust optimization model for multi-energy coupled system considering the temporal-spatial correlation and distribution uncertainty of renewable energy sources," Energy, Elsevier, vol. 216(C).
    4. DE WOLF, Daniel & SMEERS, Yves, 2000. "The gas transmission problem solved by an extension of the simplex algorithm," LIDAM Reprints CORE 1489, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    5. Chen, Yuwei & Guo, Qinglai & Sun, Hongbin & Pan, Zhaoguang & Chen, Binbin, 2021. "Generalized phasor modeling of dynamic gas flow for integrated electricity-gas dispatch," Applied Energy, Elsevier, vol. 283(C).
    6. Daniel De Wolf & Yves Smeers, 2000. "The Gas Transmission Problem Solved by an Extension of the Simplex Algorithm," Management Science, INFORMS, vol. 46(11), pages 1454-1465, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhao, Tian & Li, Hang & Li, Xia & Sun, Qing-Han & Fang, Xuan-Yi & Ma, Huan & Chen, Qun, 2024. "A frequency domain dynamic simulation method for heat exchangers and thermal systems," Energy, Elsevier, vol. 286(C).
    2. Xu, Ziqiang & Li, Cheng & Mu, Lianbo & Wang, Suilin & Lu, Junhui & Lan, Yuncheng, 2024. "Leakage detection method of underground heating pipeline based on improved wavelet threshold function," Energy, Elsevier, vol. 295(C).
    3. Gryboś, Dominik & Młynarczyk, Dorota & Leszczyński, Jacek & Wiciak, Jerzy, 2024. "Mitigation of noise pollution in compressed air installations through the use of an air collection system in the expansion process," Applied Energy, Elsevier, vol. 364(C).
    4. Zhao, Tian & Sun, Qing-Han & Li, Xia & Xin, Yong-Lin & Chen, Qun, 2023. "A novel transfer matrix-based method for steady-state modeling and analysis of thermal systems," Energy, Elsevier, vol. 281(C).
    5. Zhou, Jie & Lin, Haifei & Li, Shugang & Jin, Hongwei & Zhao, Bo & Liu, Shihao, 2023. "Leakage diagnosis and localization of the gas extraction pipeline based on SA-PSO BP neural network," Reliability Engineering and System Safety, Elsevier, vol. 232(C).
    6. Yao, Lizhong & Zhang, Yu & He, Tiantian & Luo, Haijun, 2023. "Natural gas pipeline leak detection based on acoustic signal analysis and feature reconstruction," Applied Energy, Elsevier, vol. 352(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tian, Xingtao & Lin, Xiaojie & Zhong, Wei & Zhou, Yi, 2023. "Analytical sensitivity analysis of radial natural gas networks," Energy, Elsevier, vol. 263(PC).
    2. Zhang, Tong & Li, Zhigang & Wu, Qiuwei & Pan, Shixian & Wu, Q.H., 2022. "Dynamic energy flow analysis of integrated gas and electricity systems using the holomorphic embedding method," Applied Energy, Elsevier, vol. 309(C).
    3. Lars Schewe & Martin Schmidt & Johannes Thürauf, 2020. "Computing technical capacities in the European entry-exit gas market is NP-hard," Annals of Operations Research, Springer, vol. 295(1), pages 337-362, December.
    4. repec:cty:dpaper:10.1080/0013791x.2011.573615 is not listed on IDEAS
    5. Beyza, Jesus & Ruiz-Paredes, Hector F. & Garcia-Paricio, Eduardo & Yusta, Jose M., 2020. "Assessing the criticality of interdependent power and gas systems using complex networks and load flow techniques," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 540(C).
    6. Daniel de Wolf, 2017. "Mathematical Properties of Formulations of the Gas Transmission Problem," Post-Print halshs-02396747, HAL.
    7. Liang, Yingzong & Hui, Chi Wai, 2018. "Convexification for natural gas transmission networks optimization," Energy, Elsevier, vol. 158(C), pages 1001-1016.
    8. Bao, Minglei & Hui, Hengyu & Ding, Yi & Sun, Xiaocong & Zheng, Chenghang & Gao, Xiang, 2023. "An efficient framework for exploiting operational flexibility of load energy hubs in risk management of integrated electricity-gas systems," Applied Energy, Elsevier, vol. 338(C).
    9. Mengying Xue & Tianhu Deng & Zuo‐Jun Max Shen, 2019. "Optimizing natural gas pipeline transmission with nonuniform elevation: A new initialization approach," Naval Research Logistics (NRL), John Wiley & Sons, vol. 66(7), pages 547-564, October.
    10. Xie, Shiwei & Hu, Zhijian & Wang, Jueying & Chen, Yuwei, 2020. "The optimal planning of smart multi-energy systems incorporating transportation, natural gas and active distribution networks," Applied Energy, Elsevier, vol. 269(C).
    11. Conrado Borraz-Sánchez & Dag Haugland, 2013. "Optimization methods for pipeline transportation of natural gas with variable specific gravity and compressibility," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 21(3), pages 524-541, October.
    12. Zhou, Li & Liao, Zuwei & Wang, Jingdai & Jiang, Binbo & Yang, Yongrong & Du, Wenli, 2015. "Energy configuration and operation optimization of refinery fuel gas networks," Applied Energy, Elsevier, vol. 139(C), pages 365-375.
    13. repec:cty:dpaper:1464 is not listed on IDEAS
    14. Hong, Sung-Pil & Kim, Taegyoon & Lee, Subin, 2019. "A precision pump schedule optimization for the water supply networks with small buffers," Omega, Elsevier, vol. 82(C), pages 24-37.
    15. Dieckhoener, Caroline, 2010. "Simulating security of supply effects of the Nabucco and South Stream projects for the European natural gas market," EWI Working Papers 2010-7, Energiewirtschaftliches Institut an der Universitaet zu Koeln (EWI), revised 21 Jan 2012.
    16. Caroline Dieckhöner, 2012. "Simulating Security of Supply Effects of the Nabucco and South Stream Projects for the European Natural Gas Market," The Energy Journal, , vol. 33(3), pages 153-182, July.
    17. Xie, Shiwei & Zheng, Jieyun & Hu, Zhijian & Wang, Jueying & Chen, Yuwei, 2020. "Urban multi-energy network optimization: An enhanced model using a two-stage bound-tightening approach," Applied Energy, Elsevier, vol. 277(C).
    18. Chen, Xi & Wang, Chengfu & Wu, Qiuwei & Dong, Xiaoming & Yang, Ming & He, Suoying & Liang, Jun, 2020. "Optimal operation of integrated energy system considering dynamic heat-gas characteristics and uncertain wind power," Energy, Elsevier, vol. 198(C).
    19. Song, Chenhui & Xiao, Jun & Zu, Guoqiang & Hao, Ziyuan & Zhang, Xinsong, 2021. "Security region of natural gas pipeline network system: Concept, method and application," Energy, Elsevier, vol. 217(C).
    20. Daniel de Wolf & Yves Smeers, 2021. "Generalized derivatives of the optimal value of a linear program with respect to matrix coefficients," Post-Print halshs-02396708, HAL.
    21. Shabanpour-Haghighi, Amin & Seifi, Ali Reza, 2015. "Multi-objective operation management of a multi-carrier energy system," Energy, Elsevier, vol. 88(C), pages 430-442.
    22. Jin, Xiaolong & Mu, Yunfei & Jia, Hongjie & Wu, Jianzhong & Xu, Xiandong & Yu, Xiaodan, 2016. "Optimal day-ahead scheduling of integrated urban energy systems," Applied Energy, Elsevier, vol. 180(C), pages 1-13.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:324:y:2022:i:c:s030626192201011x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.