IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i3p1266-d1045994.html
   My bibliography  Save this article

Multicriteria Design and Operation Optimization of a Solar-Assisted Geothermal Heat Pump System

Author

Listed:
  • Leonidas Zouloumis

    (Mechanical Engineering Department, University of Western Macedonia, Kozani 50100, Greece)

  • Angelos Karanasos

    (Mechanical Engineering Department, University of Western Macedonia, Kozani 50100, Greece)

  • Nikolaos Ploskas

    (Electrical and Computer Engineering Department, University of Western Macedonia, Kozani 50100, Greece)

  • Giorgos Panaras

    (Mechanical Engineering Department, University of Western Macedonia, Kozani 50100, Greece)

Abstract

This work focuses on the determination of the design and operation parameters of a thermal system depending on the optimization objective set. Its main objective and contribution concern the proposal of a generalized methodological structure involving multiobjective optimization techniques aimed at providing a solution to a practical problem, such as the design and dimensioning of a solar thermal system. The analysis is based on system operation data provided by a dynamic simulation model, leading to the development of multiple surrogate models of the thermal system. The thermal system surrogate models correlate the desired optimization objectives with thermal system design and operation parameters while additional surrogate models of the Pareto frontiers are generated. The implementation of the methodology is demonstrated through the optimal design and operation parameter dimensioning of a solar-assisted geothermal heat pump that provides domestic hot water loads of an office building. Essentially, energy consumption is optimized for a desired domestic hot water thermal load coverage. Implementation of reverse-engineering methods allows the determination of the system parameters representing the optimized criteria.

Suggested Citation

  • Leonidas Zouloumis & Angelos Karanasos & Nikolaos Ploskas & Giorgos Panaras, 2023. "Multicriteria Design and Operation Optimization of a Solar-Assisted Geothermal Heat Pump System," Energies, MDPI, vol. 16(3), pages 1-16, January.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:3:p:1266-:d:1045994
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/3/1266/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/3/1266/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Lantonio, Nicole A. & Krarti, Moncef, 2022. "Simultaneous design and control optimization of smart glazed windows," Applied Energy, Elsevier, vol. 328(C).
    2. He, Zhaoyu & Farooq, Abdul Samad & Guo, Weimin & Zhang, Peng, 2022. "Optimization of the solar space heating system with thermal energy storage using data-driven approach," Renewable Energy, Elsevier, vol. 190(C), pages 764-776.
    3. Wang, Huilong & Wang, Shengwei, 2021. "A hierarchical optimal control strategy for continuous demand response of building HVAC systems to provide frequency regulation service to smart power grids," Energy, Elsevier, vol. 230(C).
    4. Blum, David & Wang, Zhe & Weyandt, Chris & Kim, Donghun & Wetter, Michael & Hong, Tianzhen & Piette, Mary Ann, 2022. "Field demonstration and implementation analysis of model predictive control in an office HVAC system," Applied Energy, Elsevier, vol. 318(C).
    5. Knudsen, Brage Rugstad & Rohde, Daniel & Kauko, Hanne, 2021. "Thermal energy storage sizing for industrial waste-heat utilization in district heating: A model predictive control approach," Energy, Elsevier, vol. 234(C).
    6. Biemann, Marco & Scheller, Fabian & Liu, Xiufeng & Huang, Lizhen, 2021. "Experimental evaluation of model-free reinforcement learning algorithms for continuous HVAC control," Applied Energy, Elsevier, vol. 298(C).
    7. Miguel Á. García-Fuentes & Rubén García-Pajares & Cecilia Sanz & Alberto Meiss, 2018. "Novel Design Support Methodology Based on a Multi-Criteria Decision Analysis Approach for Energy Efficient District Retrofitting Projects," Energies, MDPI, vol. 11(9), pages 1-19, September.
    8. Guelpa, Elisa & Verda, Vittorio, 2019. "Compact physical model for simulation of thermal networks," Energy, Elsevier, vol. 175(C), pages 998-1008.
    9. Clarke, Fiona & Dorneanu, Bogdan & Mechleri, Evgenia & Arellano-Garcia, Harvey, 2021. "Optimal design of heating and cooling pipeline networks for residential distributed energy resource systems," Energy, Elsevier, vol. 235(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhuang, Dian & Gan, Vincent J.L. & Duygu Tekler, Zeynep & Chong, Adrian & Tian, Shuai & Shi, Xing, 2023. "Data-driven predictive control for smart HVAC system in IoT-integrated buildings with time-series forecasting and reinforcement learning," Applied Energy, Elsevier, vol. 338(C).
    2. Brown, Alastair & Foley, Aoife & Laverty, David & McLoone, Seán & Keatley, Patrick, 2022. "Heating and cooling networks: A comprehensive review of modelling approaches to map future directions," Energy, Elsevier, vol. 261(PB).
    3. Panagiotis Michailidis & Iakovos Michailidis & Dimitrios Vamvakas & Elias Kosmatopoulos, 2023. "Model-Free HVAC Control in Buildings: A Review," Energies, MDPI, vol. 16(20), pages 1-45, October.
    4. Guelpa, Elisa & Bischi, Aldo & Verda, Vittorio & Chertkov, Michael & Lund, Henrik, 2019. "Towards future infrastructures for sustainable multi-energy systems: A review," Energy, Elsevier, vol. 184(C), pages 2-21.
    5. Han, Shulun & Sun, Yuying & Wang, Wei & Xu, Wenjing & Wei, Wenzhe, 2023. "Optimal design method for electrochromic window split-pane configuration to enhance building energy efficiency," Renewable Energy, Elsevier, vol. 219(P1).
    6. Omar Al-Ani & Sanjoy Das, 2022. "Reinforcement Learning: Theory and Applications in HEMS," Energies, MDPI, vol. 15(17), pages 1-37, September.
    7. Liu, Xiangfei & Ren, Mifeng & Yang, Zhile & Yan, Gaowei & Guo, Yuanjun & Cheng, Lan & Wu, Chengke, 2022. "A multi-step predictive deep reinforcement learning algorithm for HVAC control systems in smart buildings," Energy, Elsevier, vol. 259(C).
    8. Luigi Maffei & Antonio Ciervo & Achille Perrotta & Massimiliano Masullo & Antonio Rosato, 2023. "Innovative Energy-Efficient Prefabricated Movable Buildings for Smart/Co-Working: Performance Assessment upon Varying Building Configurations," Sustainability, MDPI, vol. 15(12), pages 1-37, June.
    9. Yang, Shiyu & Oliver Gao, H. & You, Fengqi, 2022. "Model predictive control in phase-change-material-wallboard-enhanced building energy management considering electricity price dynamics," Applied Energy, Elsevier, vol. 326(C).
    10. Qin, Xin & Sun, Hongbin & Shen, Xinwei & Guo, Ye & Guo, Qinglai & Xia, Tian, 2019. "A generalized quasi-dynamic model for electric-heat coupling integrated energy system with distributed energy resources," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    11. De Lorenzi, Andrea & Gambarotta, Agostino & Morini, Mirko & Rossi, Michele & Saletti, Costanza, 2020. "Setup and testing of smart controllers for small-scale district heating networks: An integrated framework," Energy, Elsevier, vol. 205(C).
    12. Zhang, Bin & Hu, Weihao & Ghias, Amer M.Y.M. & Xu, Xiao & Chen, Zhe, 2022. "Multi-agent deep reinforcement learning-based coordination control for grid-aware multi-buildings," Applied Energy, Elsevier, vol. 328(C).
    13. Keerthana Sivamayil & Elakkiya Rajasekar & Belqasem Aljafari & Srete Nikolovski & Subramaniyaswamy Vairavasundaram & Indragandhi Vairavasundaram, 2023. "A Systematic Study on Reinforcement Learning Based Applications," Energies, MDPI, vol. 16(3), pages 1-23, February.
    14. Krarti, Moncef, 2023. "Optimal optical properties for smart glazed windows applied to residential buildings," Energy, Elsevier, vol. 278(PB).
    15. Nweye, Kingsley & Sankaranarayanan, Siva & Nagy, Zoltan, 2023. "MERLIN: Multi-agent offline and transfer learning for occupant-centric operation of grid-interactive communities," Applied Energy, Elsevier, vol. 346(C).
    16. Rehman, Obaid Ur & Khan, Shahid A. & Javaid, Nadeem, 2021. "Decoupled building-to-transmission-network for frequency support in PV systems dominated grid," Renewable Energy, Elsevier, vol. 178(C), pages 930-945.
    17. Ziemele, Jelena & Dace, Elina, 2022. "An analytical framework for assessing the integration of the waste heat into a district heating system: Case of the city of Riga," Energy, Elsevier, vol. 254(PB).
    18. Xie, Zichan & Wang, Haichao & Hua, Pengmin & Lahdelma, Risto, 2023. "Discrete event simulation for dynamic thermal modelling of district heating pipe," Energy, Elsevier, vol. 285(C).
    19. Lankeshwara, Gayan & Sharma, Rahul & Yan, Ruifeng & Saha, Tapan K., 2022. "A hierarchical control scheme for residential air-conditioning loads to provide real-time market services under uncertainties," Energy, Elsevier, vol. 250(C).
    20. Dong, Zhe & Cheng, Zhonghua & Zhu, Yunlong & Zhang, Zuoyi & Dong, Yujie & Huang, Xiaojin, 2024. "Passivity-based control of fluid flow networks with capacitance," Energy, Elsevier, vol. 299(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:3:p:1266-:d:1045994. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.