IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v363y2024ics0306261924003556.html
   My bibliography  Save this article

Grid Chaos: An uncertainty-conscious robust dynamic EV load-altering attack strategy on power grid stability

Author

Listed:
  • Sayed, Mohammad Ali
  • Ghafouri, Mohsen
  • Atallah, Ribal
  • Debbabi, Mourad
  • Assi, Chadi

Abstract

Electric Vehicles (EVs) and their charging infrastructure have witnessed rapid adoption into the smart grid owing to their ability to reduce the transportation sector's emissions. However, this hasty deployment has left the grid prone to attacks initiated through the charging ecosystem. This paper develops a family of robust dynamic load-altering attacks that manipulate the EV load to destabilize the power grid. The attack strategy is formulated based on feedback control theory and Linear Matrix Inequalities (LMIs) and incorporates mathematical modeling of the power grid uncertainties. The effectiveness of our proposed robust EV attack strategy is demonstrated through extensive simulations of attack scenarios against the New England (NE) 39-bus grid. The results demonstrate that the proposed attacks were able to destabilize the grid frequency inducing a deviation of 1.5 Hz and forcing the generators to trip after compromising as little as 6.6% of the total grid load. We also present a two-tier Deep Learning (DL) attack detection mechanism. We optimize this mechanism to achieve optimal results against dynamic and switching attacks. The proposed mechanism was evaluated against several other models and proved to be superior with an accuracy of 99.9%.

Suggested Citation

  • Sayed, Mohammad Ali & Ghafouri, Mohsen & Atallah, Ribal & Debbabi, Mourad & Assi, Chadi, 2024. "Grid Chaos: An uncertainty-conscious robust dynamic EV load-altering attack strategy on power grid stability," Applied Energy, Elsevier, vol. 363(C).
  • Handle: RePEc:eee:appene:v:363:y:2024:i:c:s0306261924003556
    DOI: 10.1016/j.apenergy.2024.122972
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261924003556
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2024.122972?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zhao, Yirui & Li, Yong & Cao, Yijia & Yan, Mingyu, 2023. "Risk-based contingency analysis for power systems considering a combination of different types of cyber-attacks," Applied Energy, Elsevier, vol. 348(C).
    2. Englberger, Stefan & Abo Gamra, Kareem & Tepe, Benedikt & Schreiber, Michael & Jossen, Andreas & Hesse, Holger, 2021. "Electric vehicle multi-use: Optimizing multiple value streams using mobile storage systems in a vehicle-to-grid context," Applied Energy, Elsevier, vol. 304(C).
    3. Ma, Tai-Yu & Faye, Sébastien, 2022. "Multistep electric vehicle charging station occupancy prediction using hybrid LSTM neural networks," Energy, Elsevier, vol. 244(PB).
    4. Lee, Dasom & Hess, David J., 2021. "Data privacy and residential smart meters: Comparative analysis and harmonization potential," Utilities Policy, Elsevier, vol. 70(C).
    5. Jenn, Alan, 2023. "Emissions of electric vehicles in California’s transition to carbon neutrality," Applied Energy, Elsevier, vol. 339(C).
    6. Rachel H. White & Sam Anderson & James F. Booth & Ginni Braich & Christina Draeger & Cuiyi Fei & Christopher D. G. Harley & Sarah B. Henderson & Matthias Jakob & Carie-Ann Lau & Lualawi Mareshet Admas, 2023. "The unprecedented Pacific Northwest heatwave of June 2021," Nature Communications, Nature, vol. 14(1), pages 1-20, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Parlikar, Anupam & Schott, Maximilian & Godse, Ketaki & Kucevic, Daniel & Jossen, Andreas & Hesse, Holger, 2023. "High-power electric vehicle charging: Low-carbon grid integration pathways with stationary lithium-ion battery systems and renewable generation," Applied Energy, Elsevier, vol. 333(C).
    2. Silva, Walquiria N. & Bandória, Luís H.T. & Dias, Bruno H. & de Almeida, Madson C. & de Oliveira, Leonardo W., 2023. "Generating realistic load profiles in smart grids: An approach based on nonlinear independent component estimation (NICE) and convolutional layers," Applied Energy, Elsevier, vol. 351(C).
    3. Zhang, Chenwei & Wang, Ying & Zheng, Tao & Zhang, Kaifeng, 2024. "Complex network theory-based optimization for enhancing resilience of large-scale multi-energy System11The short version of the paper was presented at CUE2023. This paper is a substantial extension of," Applied Energy, Elsevier, vol. 370(C).
    4. Li, Zepeng & Wu, Qiuwei & Li, Hui & Nie, Chengkai & Tan, Jin, 2024. "Distributed low-carbon economic dispatch of integrated power and transportation system," Applied Energy, Elsevier, vol. 353(PA).
    5. Müller, Mathias & Blume, Yannic & Reinhard, Janis, 2022. "Impact of behind-the-meter optimised bidirectional electric vehicles on the distribution grid load," Energy, Elsevier, vol. 255(C).
    6. Marcel Antal & Vlad Mihailescu & Tudor Cioara & Ionut Anghel, 2022. "Blockchain-Based Distributed Federated Learning in Smart Grid," Mathematics, MDPI, vol. 10(23), pages 1-19, November.
    7. Tian, Chenlu & Liu, Yechun & Zhang, Guiqing & Yang, Yalong & Yan, Yi & Li, Chengdong, 2024. "Transfer learning based hybrid model for power demand prediction of large-scale electric vehicles," Energy, Elsevier, vol. 300(C).
    8. Wang, Shuai & Wu, Xiuheng & Zhao, Xueyan & Wang, Shilong & Xie, Bin & Song, Zhenghe & Wang, Dongqing, 2023. "Co-optimization energy management strategy for a novel dual-motor drive system of electric tractor considering efficiency and stability," Energy, Elsevier, vol. 281(C).
    9. Lee, Dasom & Hess, David J. & Heldeweg, Michiel A., 2022. "Safety and privacy regulations for unmanned aerial vehicles: A multiple comparative analysis," Technology in Society, Elsevier, vol. 71(C).
    10. Fabian Rücker & Ilka Schoeneberger & Till Wilmschen & Ahmed Chahbaz & Philipp Dechent & Felix Hildenbrand & Elias Barbers & Matthias Kuipers & Jan Figgener & Dirk Uwe Sauer, 2022. "A Comprehensive Electric Vehicle Model for Vehicle-to-Grid Strategy Development," Energies, MDPI, vol. 15(12), pages 1-31, June.
    11. Ryu, Do-Hyeon & Kim, Kwang-Jae, 2024. "The influence of information privacy concerns and perceived electricity usage habits on the usage intention of advanced metering infrastructure," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PA).
    12. Gonçalves, Rui & Ribeiro, Vitor Miguel & Pereira, Fernando Lobo, 2023. "Variable Split Convolutional Attention: A novel Deep Learning model applied to the household electric power consumption," Energy, Elsevier, vol. 274(C).
    13. Ding, Xuefeng & Gan, Qihong & Shaker, Mir Pasha, 2023. "Optimal management of parking lots as a big data for electric vehicles using internet of things and Long–Short term Memory," Energy, Elsevier, vol. 268(C).
    14. Daishi Sagawa & Kenji Tanaka & Fumiaki Ishida & Hideya Saito & Naoya Takenaga & Seigo Nakamura & Nobuaki Aoki & Misuzu Nameki & Kosuke Saegusa, 2021. "Bidding Agents for PV and Electric Vehicle-Owning Users in the Electricity P2P Trading Market," Energies, MDPI, vol. 14(24), pages 1-17, December.
    15. Reif, Valerie & Meeus, Leonardo, 2022. "Smart metering interoperability issues and solutions: Taking inspiration from other ecosystems and sectors," Utilities Policy, Elsevier, vol. 76(C).
    16. Zhang, Chao & Yin, Wanjun & Wen, Tao, 2024. "An advanced multi-objective collaborative scheduling strategy for large scale EV charging and discharging connected to the predictable wind power grid," Energy, Elsevier, vol. 287(C).
    17. Dasom Lee & David J. Hess, 2022. "Public concerns and connected and automated vehicles: safety, privacy, and data security," Palgrave Communications, Palgrave Macmillan, vol. 9(1), pages 1-13, December.
    18. Mayurkumar Rajkumar Balwani & Karthik Thirumala & Vivek Mohan & Siqi Bu & Mini Shaji Thomas, 2021. "Development of a Smart Meter for Power Quality-Based Tariff Implementation in a Smart Grid," Energies, MDPI, vol. 14(19), pages 1-21, September.
    19. Lin, Boqiang & Yang, Mengqi, 2024. "Changes in consumer satisfaction with electric vehicle charging infrastructure: Evidence from two cross-sectional surveys in 2019 and 2023," Energy Policy, Elsevier, vol. 185(C).
    20. Chang, Long & Ma, Chen & Zhang, Chenghui & Duan, Bin & Cui, Naxin & Li, Changlong, 2023. "Correlations of lithium-ion battery parameter variations and connected configurations on pack statistics," Applied Energy, Elsevier, vol. 329(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:363:y:2024:i:c:s0306261924003556. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.